Shell Exploration & Production Europe

Pseudo Relative Permeabilities A means of more accurate reservoir simulations

1. History of pseudo relative permeability methods

2. Example of pseudos technology developed and applied in Brent field simulations 1986 – 89

by Bjørn Reinholdtsen March 2010

My Resume

2006 - Present	Regional Value Assurance Advisor – Shell EP Europe Reviews of Shell's projects in Europe	
2003 - 2006	Regional Resource Volume Manager – Shell EP Europe Management of Shell's reserves in Europe during reserves dispute wi	th SEC
2001 - 2003	Capability Manager, Norske Shell Strengthening technical skills of PE staff	
1999 - 2001	Managing Shell's interests in a group of fields and looking after staff s	kills
1998 – 1999	Responsible for all Shell's PE work and PE staff (25) in Norway	
1991 – 1998 <mark>developments</mark>	Responsible for all Shell's RE work in Norway, including Troll and D	raugen
1989 – 1991	Managing Shell's interests in all partner operated oil fields in Norwo	зу
1986 - 1989	Major simulation study (20 man years) leading to Brent field depres	surisation
1980 – 1986	Reservoir engineer for Troll gas development/leading multi company	y task force
1976 – 1980	Development of Statfjord field (Mobil)	
1971 -1975	Student NTH	
2 Pseudos pre	esentation	March 2010

Pseudo relative permeabilities

A means of incorporating more accurate physics into each grid block

- Effects of detailed geology and saturation distribution represented in (pseudo) relative permeabilities for large grid blocks

Advantages

- Allows accurate simulation with fewer grid blocks
- Suppresses numerical dispersion (non-physical flow of displacing fluid into neighbouring grid blocks)
- Reduced turn-around times for simulation runs

Disadvantages

- Not well understood by simulation engineers
- Generation of pseudos is seen as cumbersome
- Belief that more grid blocks are a simpler option
- Pseudos cannot fully solve all grid resolution issues (e.g. local balance between gravity and viscous forces in well coning/cusping situations)

Relative Permeability as measured in laboratory Basic input to all reservoir simulation work

- Measured on small core plugs
- Often applied in field scale reservoir simulation
 - Assumed valid for entire grid block volume
 - Does not account for saturation gradients within the grid block
 - Leads to non-physical numeric dispersion and inaccurate simulation results
- Pseudo relative permeabilities represent a method for more accurate field scale simulation

Brief history of pseudo rel. perm. technology

- Early concepts (late 1960's 1970's) focussed on representing 3D problems in 2D areal simulators (Coates et. al., Hearn, Jacks et. al., Kyte & Berry)
 - Available computers allowed very limited number of grid blocks
- During the 1980's a number of papers aimed at refining the generation of psuedos
 - Many papers focus on upscaling of models of heterogeneous reservoirs (Killough et. al., Davies & Haldorsen, Kossack et. al.)
- In 1991 Stone presented a rigorous method which allows reproduction of fine grid model results for varying rates and including non-communicating layers
- In later years the interest in pseudo relative permeabilities has faded
 - Apparently the belief is that more powerful computers, allowing many more grid blocks, has removed the need for pseudos
 - Another factor is that preparation of pseudos is seen as combersome and is not well understood by simulation engineers

SPE Advanced Technology Workshop on History Matching in Nov. 2009 concluded:

6

Kyte & Berry procedure for calculating pseudos

7 Pseudos presentation

Brent Field - Structural Cross-section

Pseudos presentation

Areal simulation grid Brent reservoir

- Grid block size 1000ft x 500ft
- Basis for grid block size:
 - Overnight turnaround of history match runs
- About 100 wells during field history

Water saturation distribution in area Water corresponding to one Brent model grid block saturation Displacement front velocity ~1ft/day 72 % 1¹/₂ years travel time through a 500 ft FFM grid block Assuming fluid dispersion within FFM grid ٠ block volume will lead to serious error 94 fi 46 % 20 %

2-D and 1-D simulation models for generation and checking of pseudo curves

Brent reservoir intra-layer permeability profiles

12 Pseudos presentation

Pseudo relative permeability for coarsening upwards sequence

Comparison of 2-D and 1-D model saturation profiles Low permeability coarsening upwards profile

Comparison of 2-D and 1-D model pressure profiles Low permeability coarsening upwards profile

Comparison of 2-D model saturation profiles for uniform and coarsening upwards permeability profiles

Pseudo rel. perm. type allocation

Brent reservoir layer 1

Water saturation profiles in 2-D and 1-D simulations – both with rock curves

19 Pseudos presentation

Pseudos in other directions

Simplified vertical equilibrium model for drainage

1) for initialising model and

2) for starting points of hysteresis scanning curves

- Pseudos in all directions are calculated based on saturations at grid block boundaries
- Home-made FORTRAN program used in Brent study

Sharp contacts assumed in the middle of transition zone in all sublayers (simplified cap. pressures)

Pc = 0 FREE WATER LEVEL

Similar to Coats model for dipping reservoir

Total set of oil/water pseudos Brent permeability profile prototype 1

Hysteresis on pseudo relative permeabilities

New hysteresis model developed for Brent implemented in Shell's BOSIM simulator

Observations

- Hysteresis options in most simulators are in principle based on dispersed flow
- However, in some cases functions are flexible and may allow valid hysteresis representation also for pseudo rel. perms
- 23 Pseudos presentation

Reverse (down) cusping of oil in areal layer 2 of detailed 3-D model

24 Pseudos presentation

Calculation method for oil/water well pseudos

- The following information was extracted from the simulator at selected time steps:
 - $-q_{o}$ Oil rate for the producing half well
 - q_w Water rate for the producing half well
 - BHFP Bottom hold flowing pressure at the mid point of top completed grid block (datum level)
 - p_w Pore volume weighted datum water phase pressure within the 20 grid block areal window
 - p_o Pore volume weighted datum oil phase pressure within the 20 grid block areal window
 - S_w Pore volume weighted water saturation within the 20 grid block areal window
- For convenience a constant is calculated during the period of single phase flow before water reaches the well area (drawdown per unit oil rate for $k_{ro}=1$)

$$C = (p_o - BHFP) \cdot k_{ro}(S_{wc}) / q_o$$

• Well pseudo oil and water relative permeabilities at later times are calculated as follows:

$$k_{ro} = \frac{q_o \cdot C}{p_o - BHFP}$$

$$k_{rw} = \frac{q_w \cdot \mu_w B_w \cdot C}{\mu_o B_o (p_o - BHFP)}$$

25 Pseudos presentation

Cusping of gas in areal layer 2 of detailed 3-D model

26 Pseudos presentation

Calculation method for gas/oil well pseudos

- The following information was extracted from the simulator at selected time steps:
 - $-q_{\circ}$ Oil rate for the producing half well
 - q_g Water rate for the producing half well
 - BHFP Bottom hold flowing pressure at the mid point of top completed grid block (datum level)
 - *p_g* Pore volume weighted datum gas phase pressure within the 20 grid block areal window
 - p_o
 Pore volume weighted datum oil phase pressure within the 20 grid block areal window
 - S₁- Pore volume weighted liquid saturation within the 20 grid block areal window
- For convenience a constant is calculated (drawdown per unit oil rate for $k_{ro}=1$) $C = (p_o - BHFP) \cdot k_{ro}(1 - S_{gc}) / qo$
- Well pseudo oil and water relative permeabilities are calculated as follows:

$$k_{ro} = \frac{q_o \cdot C}{p_o - BHFP}$$

$$k_{rg} = \frac{(q_g - q_o \cdot R_s) \cdot \mu_g B_g \cdot C}{\mu_o B_o (p_o - BHFP)}$$

27 Pseudos presentation

Well pseudos – Brent prototype 1

Facility for generating well pseudos is not readily available in MoReSHowever, same approach as used in Brent study can be adopted

Saturation distribution in oil rim models subsequent to water and gas breakthrough

Performance comparison Fine and coarse grid oil rim models

Observations

- Production performances of the two models are similar
- However, gas breakthrough is delayed by about 2 years in the coarse grid model (GOR development thereafter is accurate)
- Demonstrates limitation of pseudos
 - Focussed pressure sink around well not properly represented in coarse grid
- **Pseudos presentation** 30

Delayed gas breakthrough

2-D coarse grid model with inter grid block

Conclusions

- Pseudo relative permeabilities can substantially reduce the number of grid blocks
 - Accurate simulation can be achieved with number of grid blocks reduced by a factor of 10 or more
 - The Brent study demonstrates the potential of this technology
- Pseudos can be introduced in any commercial simulator, but may require separate software and manipulation of data from fine grid simulations
- Simulation of large fields with many wells are the most obvious candidates for the use of pseudo relative permeabilities

Brent reservoir model History match of RFT pressures

