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Abstract 
This paper presents a new incompressible single-phase model 
for ESP’s head performance. Sachdeva (1988) and Cooper 
(1966) developed models for ESP channels [1, 2] and for 
inducers [3], respectively. The model presented in this paper is 
based on one-dimensional approximation along an ESP 
channel. The new derived pressure ODE (Ordinary 
Differential Equation) for frictionless incompressible flow is 
consistent with the pump Euler equation.  New models for 
pump frictional and shock losses have been proposed. Finally, 
a comparison between the predicted pump performance and 
the pump performances from Affinity Law for different 
rotational speeds is presented. The single-phase model can 
predict ESP performance under different fluid viscosities and 
also is the basis of gas-liquid model for ESP’s head 
performance.  

 
Introduction 
This paper presents the new single-phase model developed for 
the prediction of an ESP’s performance. The correct ESP head 
performance is critical for the appropriate design, simulation 
and troubleshooting of an ESP installation. The model consists 
of the mass and momentum equations, based on the streamline 
approach or one-dimensional assumption. In the momentum 
equations, the calculation of the friction factor proposed by 
Sachdeva, is improved by incorporating the channel curvature, 
channel rotation, and channel cross-section effects. A new 
shock loss model including rotational speeds has been 
proposed. The new single-phase model is capable of 
predicting the pump performance for different rotational 
speeds and for different viscosities. 
 
Literature Review 
Sachdeva (1988, 1994) derived the frictionless pressure ODE 
under incompressible single-phase flow as follows, 
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where p is pressure,  is angular velocity, r is radius along 
the channel, is liquid density, and V  is the radial 
component of absolute velocity. 

ω
lρ r

Sachdeva’s previous equation needs to be extended for any 
blade angle in an ESP.  

The frictionless pressure ODE given by Cooper (1966) for 
an inducer [3], 
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where W is the relative velocity. 
Different investigators such as Sachdeva and Cooper 

superimposed frictional losses into their frictionless pressure 
ODE.  

The friction factor in Sachdeva’s frictional loss model 
considers the effects of curvature for the diffuser and both 
curvature and rotational speed for the impeller.  

Sachdeva’s approach for friction factor calculation is very 
important to model pump performance. His approach assumed 
smooth surface and turbulent flow regime inside ESP 
channels. 
 
Mass Balance Equation 
The derivation of the one-dimensional mass balance equation 
[4] yields the following expression along the channel in an 
impeller or diffuser. 
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where β  is the geometric blade angle as shown in Fig.1, s is 
the streamline coordinate, which is the distance between the 
entrance to any location along the channel, and t is time. The 
streamline in this one-dimensional model is at the center of the 
channel and has the same shape as its two blades. 

For steady-state incompressible liquid flow along the ESP 
channel, the relative velocity W can be expressed as, 

βπ sin2 Hr
QW l= , (4) 

where Q  is the liquid flow rate and H is the channel height. l
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Pump Head Equation 
The head developed by each pump stage includes two parts: 
impeller head and diffuser head. The equations for the 
frictionless case will be presented first.  Details of the 
derivation of the frictionless pressure and head equation can 
be found in Sun (2002) [4].  Later in this section, the final 
form of the model, including friction, will be presented.  

 
Frictionless Pressure and Head Equation. If the fluid 
friction is neglected, the pressure ODE along the channel at 
radius r is, 
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where  is the gravitational acceleration in the streamline 
direction, subscript s signifies the streamline. 

sg

The steady-state frictionless pressure ODE along an ESP 
channel can be simplified as, 
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After integration of the pressure ODE along the streamline, 
the pressure increment in the impeller can be expressed as, 
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where subscript 1 indicates the entrance of an impeller or a 
diffuser,  are the vertical components of the z value at 
the impeller entrance and discharge, respectively. 

21, vv zz

By definition, impeller head can also be expressed as, 
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where V is the absolute velocity. 
Combining the previous two equations, the impeller head 

becomes, 
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where U is the peripheral velocity, which can be expressed as,  
rU  ω= . (10) 

The velocity relationship along a radial impeller channel can 
be illustrated as Fig. 1. 

Since the frictionless diffuser head is zero, the frictionless 
pump head for a stage is equal to the impeller head, 
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It is documented that the pump head derived from the new 
frictionless model for a stage is the same as the Euler head [5].  
Therefore, the new frictionless pressure ODE is correct. The 
Euler pump head is, eH
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Using the velocity relationships, the Euler head can also 
expressed as, 
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Finally, the Euler head  can be expressed as, eH
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The gravitational term in equation (6) is small compared to 
the centrifugal force and can be neglected. The final 
frictionless pressure equation agrees with Eq. 2 presented by 
Cooper (1966) [3]. 
 
Pressure and Head Equation Including Friction Losses. 
When fluid friction is considered, the friction loss term can be 
superimposed onto the pressure frictionless ODE equation. 
The pressure distribution ODE at the radial position r along an 
ESP channel then becomes: 
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friction, which can be related to a pressure gradient 
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the relationship between s and r can be expressed as,  
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and j=1 for impeller and j=-1 for diffuser. If the channel has a 
hydraulic diameter  and the fluid is moving with a relative 

velocity W to the channel, the term 
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where f is a friction factor. Expression for the friction factor f 
will be discussed in a later section.   
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Equation (15) is valid for impeller ( ) and 

diffuser ( ), where  is the impeller angler 
velocity. 

impellerωω =
0=ω impellerω

The pump head per stage without shock losses can be 
calculated using the pressure increment between the impeller 
eye and the next stage of the impeller eye, as follows, 
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where  is the impeller eye pressure of the stage intake, 

 is the impeller eye pressure of the next stage.  

Eyep
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The shock losses in the single-phase condition can be 
estimated with Pfeiderer and Peterman’s (1986) formula [6]. 
In this study, the shock losses for water is calculated using the 
head difference, as shown in Fig.2, between the head 
performance for water from the frictional model and the actual 
pump performance from the manufacturer. The shock losses 
for water at certain rotational speed, , can be 
regressed as a quadratic equation as follows, 
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where the three coefficients  
are corresponding to the water shock losses at certain 
rotational speed, called base rotational speed. 
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In this study, the shock losses for different rotational 
speeds is assumed to follow the affinity laws. Then the head 
shock loss for any single-phase liquid property under any 
rotational speed  is proposed as, impellerω
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Accordingly, the pressure shock losses can be proposed as, 
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Finally, the pump pressure increment and pump head per 
stage will be as follows, respectively, 

tpshockEyeEyenextstage pppp ,_ ∆−−=∆ , (23) 
and, 
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Calculation of Friction Factor 
To calculate the friction factor, the hydraulic diameter is 
needed and is related with the cross-section geometry. An ESP 
channel has a near rectangular cross-section with a channel 
width a and a channel height b, as shown in Fig.3. They can be 
obtained from the geometric relationship, 

βπ sin2
n

ra = , (25) 

Hb =  , (26) 
where n is the number of impeller blades or diffuser blades . 
 The hydraulic diameter, , can be expressed as,  Hd

ba
abd H +

= 2
. (27) 

 
 

Reynolds Number. The friction factor depends on whether 
the flow regime occurring in the channel is laminar or 
turbulent. The determination of the flow regime depends on 
the Reynolds number , which is related to the relative 

velocity W  along ESP channels as, 
ReN

l

lH Wd
N

µ
ρ

=Re , (28) 

where  is liquid viscosity. lµ
Here, the friction factor for circular, straight stationary 

pipes will be presented, since it will be used as the starting 
point for inclusion of the mentioned characteristics of ESP 
channels. 

 
Friction Factor for Straight Stationary Pipes with Circular 
Cross Sections. For flow inside a straight stationary pipe with 
circular cross section, namely, for flow inside a normal pipe, 
the transition between laminar and turbulent flow occurs at a 
critical Reynolds number as follows, 

( ) 2300_Re =normalcritN . (29) 
In the rest of this document, one can adopt the following 

nomenclature for friction factor, 

movement curvature, shape,f  
The first subscript, “shape”, indicates the shape of the 

cross-section in the channel; the second subscript, “curvature”, 
indicates if the channel is curved or straight; the third 
subscript, “movement”, indicates if the channel is stationary or 
rotating. 

The friction factor for laminar flow in a circular, straight, 
stationary pipe is given by, 
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The friction factor for turbulent flow in a circular, straight, 
stationary pipe is given by Churchill (1977) [7] as follows, 
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where  is the absolute roughness of the channel. ε
 
Friction factor effects. The friction factor used in a straight, 
stationary pipe with a circular cross section is not applicable to 
ESP impeller and diffuser channels.  An ESP channel has a 
rectangular cross-section, is curved and the impeller rotates 
during operation.  The flow inside this geometry is very 
different from the one encountered inside straight, stationary 
pipes with circular cross-sections.  The presence of secondary 
flows inside the impeller and diffuser channels must be 
considered as pointed out by Schlichting (1955) [8] and Ito 
(1971) [9]. 

Several investigators have studied the effects of channel 
curvature, cross-section shape, and rotational speed on the 
critical Reynolds number and on the friction factor. 
Unfortunately, though, the effect of each of these factors was 
studied independently of each other.  

Sachdeva (1988, 1994) incorporated the one or two effects 
together for an ESP diffuser or impeller, which is very 
important for the friction factor calculation. In this study, the 
modified critical Reynolds Number and friction factor 
corrections presented in the later sections are an 
approximation of what occurs in an ESP channel when more 
than one of those factors is actually influencing the flow 
simultaneously. 

Here, each independent effect is presented first. 
 
Cross Section Shape Effect. Since only the shape effect is 

being considered, the flow regime can be determined using the 
Reynolds number for cross-section effect. The works of Shah 
(1978) [10] and Jones (1976) [11] will be used to calculate the 
shape effect on the friction factor for laminar and turbulent 
flow, respectively. 

 
Critical Reynolds number. The critical Reynolds Number 

for flow regime transition due to shape effect is: 
( ) 2300ngularcrit_rectaRe =N . (32) 
 
Laminar Flow. If , then laminar 

flow occurs. 

( ) ngularcrit_rectaReRe, NN l ≤

The effect of the rectangular cross-section shape on the 
friction factor for straight, stationary pipes in laminar flow has 
been studied by Shah (1978). 

The “laminar equivalent diameter” , which is defined 
based on the work of Cornish (1928) [12], can be used to 
calculate the friction factor under laminar flow.  
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where  is the aspect ratio of the rectangular cross section for 
liquid defined as, 
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The corresponding equivalent Reynolds number  
is: 
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N

µ
ρ

=Re_ . (35) 

For fluid flowing in a rectangular cross-section, straight, 
stationary pipe under a laminar flow, the friction factor as 
presented by Shah (1978) is, 

eqN
f

Re_
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The multiplication factor under laminar flow for 
a diffuser or an impeller with a rectangular cross section can 
finally be written as, 
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     Turbulent Flow. If , then 

turbulent flow occurs.  

( ) ngularcrit_rectaReRe NN >

The effect of the rectangular cross-section shape on the 
friction factor for straight, stationary pipes in turbulent flow 
was studied by Jones (1976) [11].  

The author suggested that the “laminar equivalent 
diameter”, , also be used to calculate the friction factor 
under turbulent flow.  

eqd

The friction factor for turbulent flow in a smooth, straight, 
stationary pipe with rectangular cross-section can be expressed 
by the Blasius equation based on the equivalent Reynolds 
number. 

25.0
Re_stationary straight, r,rectangula 316.0 −×= eqNf . (38) 

One can then obtain the multiplication factor, , 
under turbulent flow for a diffuser or impeller with a 
rectangular cross section as: 

rrectangulaF
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Pipe Curvature Effect. The pipe curvature effect on the 

friction factor for circular cross-section, stationary pipes has 
been studied by Ito (1959) [13].  The pipe curvature effect 
changes the criteria for determination of the flow regime and 
calculation of friction factor. 

Ito (1959) presented criteria to determine the importance of 
the curvature. If the radius of curvature is large, compared to 
the hydraulic radius , then the channel can be treated as a 
straight pipe. If the radius of curvature is small, in comparison 
to the hydraulic radius, the author presented a new critical 
Reynolds number for the flow regime transition and a new 
expression for calculating the friction factors. 

Hr

 
Critical Reynolds Number. The transition from laminar to 

turbulent flow then occurs at a critical Reynolds number, 
, which is a function of the channel radius of 

curvature, , and the hydraulic radius, , as follows, 
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where  is the hydraulic radius based on the hydraulic 
diameter given by, 

Hr

2
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dr = . (41) 

 
Laminar Flow Friction factor. If the Reynolds number is 

less than the critical Reynolds number, namely, 
, then the flow is laminar. dcrit_curveReRe )(NN ≤

 The laminar flow friction factor also depends on the ratio 
between the channel radius of curvature and the channel 
hydraulic radius. 

 
(a) Straight Pipe Approach  
If the ratio between the radius of curvature, , and 

hydraulic radius, , is equal or greater than 860, namely 
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(b) Curvature Effect Approach  
 
If the ratio between the radius of curvature  and 

hydraulic radius  is less than 860, namely, 
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curvature effects must be considered. The friction factor for 
laminar flow in curved pipes was obtained in this study by 
fitting White’s (1929) empirical curve [13] sketched in Ito 
(1959), as follows, 
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Finally, a multiplication factor for the curvature effect 
 is obtained as, curvedF
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Turbulent Flow. If the Reynolds number is larger than the 

critical Reynolds number, namely, , 
then the flow is turbulent.  

dcrit_curveReRe )(NN >

There are two sets of turbulent friction factor formulas 
available [13].  They were derived by using two different 
velocity profile assumptions.  One is derived by using 1/7th – 
Power Velocity Distribution Law.  The other is derived by 
using the logarithmic velocity distribution law.  The 
assumption of 1/7th – Power Velocity Distribution Law is used 
in this study.  Based on Ito’s work, the following expression 
can be used for the multiplication factor for curvature effect in 
turbulent flow. 
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Radius of Curvature. The channel or streamline radius of 

curvature is an important parameter in calculating the friction 
factor for curvature effect.  

In this study, a general equation for the three-dimensional 
channel radius of curvature [4] was derived, which is valid for 
radial and mixed pumps. The radius of curvature, , for a 

point with coordinates  is: 
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where  are the center coordinates of the 
approximate circular interval of the channel, as shown in Fig. 
4. 
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A z z23 3 12= −( ) , (58) 

2
1

2
3

2
1

2
3

2
1

2
32 zzyyxxD −+−+−= , (59) 

1
1
1

det

33

22

11

31

zy
zy
zy

A = , (60) 

1
1
1

det

33

22

11

32

zx
zx
zx

A −= , (61) 

1
1
1

det

33

22

11

33

yx
yx
yx

A = , (62) 

333

222

111

3 det=
zyx
zyx
zyx

D , (63) 

For a radial pump, the channel radius of curvature, , 
can be expressed by a simpler formula [4]: 

cR

β
ββ

tan
1)(

1
sin

1

rdr
rd

Rc
+−

= . (64) 

The derivations for the channel radius of curvature and a 
comparison between results from Equations (48) and (64) for a 
radial pump can be found in Sun (2002) [4]. The results show 
a good match between both equations. 

 
Rotational Speed Effect. The rotation effect on the friction 

factor for straight pipes with circular cross-section was studied 
by Ito (1971) [9]. 

Ito (1971) suggested that the flow regime and friction 
factor for rotational pipes were influenced by rotational 
Reynolds number  defined by, ΩReN

l

lHdN
µ

ρω 2

Re =Ω . (65) 

If the rotational Reynolds number is less than 28, the pipe 
can be considered stationary. If the rotational Reynolds 
number is equal or greater than 28, rotational speed effects 
must be considered. 

 
Critical Reynolds Number. The transition criteria 

distinguishing laminar and turbulent flow occur at a critical 
Reynolds number function of the rotational Reynolds number. 
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



<
≥

=

Ω

ΩΩ

28 if                      2300
28 if       )070(N1

)(

Re

Re
0.23

Re

ioncrit_rotatRe

N
N

N

. (66) 

 
Laminar Flow. If , then the flow is 

laminar.  

( ) ioncrit_rotatReRe NN ≤

The friction factor for a rotating pipe under laminar flow 
conditions depends on the dimensionless parameter  
defined as, 

laminarK

ReRelaminar NNK Ω= . (67) 
The following are the expressions of the rotating 

multiplication factor under laminar flow. 

(a) If  and 220laminar ≤K 5.0
Re

Re <Ω

N
N

 then, 

1
stationarystraight,circular,

rotationstraight,circular,
rotation ==

f
f

F . (68) 

 (b) If  and 7
laminar 10220 << K 5.0

Re

Re <Ω

N
N

 then, 

( )325.0
laminar

25.0
laminar

stationarystraight,circular,

rotationstraight,circular,
rotation

2.1110883.0 −+

==

KK

f
f

F
. (69) 

 (c) If 5.0
Re

Re ≥Ω

N
N

 then, 

5.0
Re

5.0
Re

stationarystraight,circular,

rotationstraight,circular,
rotation

11.21
0672.0

−
Ω

Ω

−
=

=

N
N

f
f

F
. (70) 

 
Turbulent Flow. If , then the flow 

is turbulent. 

( ) ioncrit_rotatReRe NN >

The friction factor for a rotating pipe under turbulent flow 
conditions depends on the dimensionless parameter  
defined as, 

turbulentK

Re

2
Re

turbulent
)(

N
NK Ω= . (71) 

The following are the expressions of the rotating 
multiplication factor under turbulent flow. 

(a) If  then, 1turbulent <K

1
stationarystraight,circular,

rotationstraight,circular,
rotation ==

f
f

F . (72) 

 (b) If 1  then, 15turbulent ≤≤ K

282.0
turbulent

stationarystraight,circular,

rotationstraight,circular,
rotation

058.0942.0 K

f
f

F

+=

=
. (73) 

 (c) If  then, 15turbulent >K

05.0
turbulent

stationarystraight,circular,

rotationstraight,circular,
rotation

942.0 K

f
f

F

=

=
. (74) 

 
Calculation of Friction Factor for Impeller and 
Diffuser Channels. The equations presented in previous 
sections enables the determination of the critical Reynolds 
Number, flow regimes, and friction factor taking into 
consideration the cross-section shape, curvature and rotational 
effects once at a time. 

In actual ESP, the diffuser channel is subjected to two of 
those effects simultaneously, whereas the impeller channel is 
influenced by all three effects. In this way, the flow regime 
and friction factor in an actual ESP channel should take into 
consideration a superimposition of those effects. 

 
Critical Reynolds Number and Flow Regime. In this 

study, Critical Reynolds Number with Increment 
Superimposition is proposed as follows. 

The two critical Reynolds numbers under the two 
simultaneous effects: rectangular and curvature effects in a 
diffuser have a same value as follows: 

( )

( )

( ) 































−+











−+

×

=

1
)(

1
)(

1

)(

_Re

dcrit_curveRe

_Re

ngularcrit_rectaRe

_Ret,diffusercrit_effecRe

normalcrit

normalcrit

normalcrit

N
N

N
N

NN

. (75) 

For an impeller, the three critical Reynolds numbers under 
the three simultaneous effects: rectangular, curvature, and 
rotational effects in an impeller have a same value as follows: 

( )

( )

( )

( ) 





































−+











−+











−+

×

=

1
)(

1
)(

1
)(

1

)(

lcrit_normaRe

ioncrit_rotatRe

lcrit_normaRe

dcrit_curveRe

lcrit_normaRe

ngularcrit_rectaRe

lcrit_normaReimpellert,crit_effecRe

N
N

N
N

N
N

NN

 
(76) 

 
Friction Factor. Superimposition of multiplication factors 

adopted by Sachdeva (1988) [1, 2] is used in this study. It is 
assumed that each individual effect multiplication factor can 
be superimposed to obtain the total friction factor for an 
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impeller or diffuser. An additional rectangular multiplication 
factor is included into the new model in this study. 

Therefore, the friction factor for an impeller, 

stationarystaight,circular,rotationcurvedrectanglar

impeller

fFFF
f =

, (77) 

and the friction factor for a diffuser, 

stationarystaight,circular,curvedrectanglar

diffuser

fFF
f =

. (78) 

 
Boundary Conditions 
To solve the pressure distributions along the impeller and 
diffuser, the boundary conditions of pressure and velocity are 
needed. 

 
Pressure Boundary Conditions. The entrance pressure in an 
impeller is the starting point when one calculates the pressure 
distribution along the impeller channel. Assuming no losses 
between the impeller eye and the impeller entrance and using 
Bernoulli’s equation, one obtains, 

0
2

2
Eye

2
ntranceimpeller_e

Eyentranceimpeller_e

=
−

+

−

g
VV

g
pp

lρ
, (79) 

where  is the fluid absolute velocity at the 

impeller entrance; V  is the fluid absolute velocity at the 

impeller eye.  is the pressure at the impeller 

entrance;  is the pressure at the impeller eye. Then, the 
impeller entrance pressure can be related to the impeller eye 
pressure as, 

ntranceimpeller_eV

Eye

impeller_ep

Eyep
ntrance

( )
2

2
ntranceimpeller_e

2
Eye

Eyentranceimpeller_e

VV

pp

L −
+

=

ρ . (80) 

After the discharge pressure in the impeller is obtained, 
one must have the entrance pressure in the diffuser to continue 
calculating the pressure distribution along the diffuser.   

 Similarly, the diffuser entrance pressure  
can be related to the impeller discharge pressure 

 as, 

ntrancediffuser_ep

ischargeimpeller_dp

( )
2

2
ischargeimpeller_d

2
ntrancediffuser_e

ischargeimpeller_dntrancediffuser_e

VV

pp

L −
−

=

ρ , (81) 

where  is the relative fluid velocity at the 

diffuser entrance; V  is the absolute fluid velocity 
at the impeller discharge. 

ntrancediffuser_eV
ischargeimpeller_d

Similarly, the impeller eye pressure at the next stage 
 can be related with the diffuser discharge pressure   

 as, 
next_Eyep

diffuser_dp ischarge

( )
2

2
next_Eye

2
ischargediffuser_d

ischargediffuser_dnext_Eye

VV

pp

L −
+

=

ρ , (82) 

where  is the fluid absolute velocity at the 

diffuser discharge; V  is the fluid absolute velocity at 

the next stage of the impeller eye, and V  for 
single-phase incompressible flow. 

ischargediffuser_dV

next_Eye

next_EyeVEye =

 
Velocity Boundary Conditions. In addition to the pressure 
boundary conditions, the actual flow angles at the impeller 
entrance and discharge can affect the velocity boundaries. The 
calculation approach of the actual fluid angles at the impeller 
entrance and discharge in this study can be found in next 
section. 

 
Results 
Input Data. An example of the input data under single-phase 
flow is shown in Table 1 and Table 2. The single stage of the 
pump is shown in Fig.5. 

 
Comparison between model results and experimental 

data. The first step is using water to obtain the actual flow 
angles at the impeller entrance and discharge by adjusting the 
two actual flow angles and matching the performance from the 
frictional model with the performance from the manufacturer 
at a level near the best efficiency point. The matched pump 
performances are shown in Fig.2. 

In this example, the geometric angles were estimated 
visually. If the actual geometric angles are given by the 
manufacturer, then the values in Table 1 and Table 2 can be 
replaced by the accurate values, and the actual flow angles of 
the impeller should be adjusted again. 

For simplicity in this example, the actual flow angles of 
the impeller were assumed the same as the impeller’s 
geometric angles, since no accurate impeller geometric angles 
were available. Finally, the actual flow angles of the impeller 
were obtained through performance matching as shown in 
Fig.2. The actual flow angle projection on the plane 
perpendicular to the axis at impeller discharge was obtained as 
23°. The actual flow angle projection on the plane 
perpendicular to the axis at impeller entrance was obtained as 
38°. 

In this example, the head difference in the Fig.2 is the 
shock loss for water at a base rotational speed 50 HZ, which 
can be regressed as, 

042.210122.5

103.3
3

26
,

+×−

×=∆
−

−

l

lbaseshock

Q

Qh
. (83) 
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Therefore, the three coefficients in this example are: 
, , 

.  

6
, 103.3 −×=baseshocka

042.2, =baseshockc

3
, 10122.5 −×−=baseshockb

 
Affinity Law. The second step is to predict the pump 
performance for different operation conditions. The predicted 
pump performance for different rotational speeds for water is 
shown in Fig.6, which has the almost same value as the pump 
performance for different rotational speeds from the Affinity 
Law, using a base of 50 HZ performance. 

 
Model Capability. The model is capable of predicting pump 
performance for different rotational speeds and different liquid 
properties, such as viscosities under single-phase flow, as 
shown in Fig.7, which must be verified when the experimental 
data are available. 

 
Conclusions 
A new one-dimensional single-phase liquid model has been 
developed for different ESP pump types, liquid properties, and 
motor rotational speeds. 

A pressure frictionless ODE was derived for an ESP 
pump. It has been verified through integration and 
comparison with Euler head equation. 

• 

• 

• 

The model for wall friction factor to account for the 
three effects was improved. A new equation to decide 
the critical Reynolds number in ESP is proposed and 
needs to be verified. 
A new shock loss model including rotational speed 
has been proposed and verified after comparing the 
model results with the head performances from 
manufacturer for different rotational speeds. 
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Nomenclature 
a          =Channel width, m 
b  =Channel height for impeller or diffuser, m 

eqd  =Equivalent diameter, m 

Hd  =Hydraulic diameter, m 

fdr
dp






    = Pressure radial gradient due to fluid friction, 

Pa/m 
f  = Friction factor 

Bf  = Blasius friction factor for smooth, straight 
pipes 

curvedF  =Curvature multiplication factor  

rrectangulaF  =Multiplication factor of rectangular effect  

g  =Gravitational acceleration, m/s2 

H =Channel height, m 
j =Indicator for impeller or diffuser, j=1 for the 

impeller and j=-1 for the diffuser 

laminarK  =Dimensionless parameter for a rotating pipe 
under laminar flow conditions for liquid 

turbulentK  =Dimensionless parameter for a rotating pipe 
under turbulent flow conditions for liquid 

l =Aspect ratio of the rectangular channel 
n  =Channel numbers 

ReN   =Reynolds number 

dcrit_curveRe )(N =Critical Reynolds number for curvature effect  

( ) lcrit_normaReN =Critical Reynolds number for a normal pipe, 

namely, a straight stationary pipe with circular 
cross section 

( ) ngularcrit_rectaReN =Critical Reynolds number for rectangular 

effect  
( ) ioncrit_rotatReN =Critical Reynolds number for rotational 

effect  

eqNRe_  =Equivalent Reynolds number  

ReN  =Reynolds Numbers for liquid 

ΩReN  =Rotational Reynolds number 

bepQ  =Flow rate at the best efficiency point, m3/s 

bepH  =Pump head at the best efficiency point, m 
p  =Pressure, Pa 

Eyep  =Impeller eye pressure of the stage intake, Pa 

Eyenextp _  =Impeller eye pressure of the next stage, Pa 

shockp∆  =Shock loss, Pa 

lQ  =Liquid flow rate, m3/s 
 r  =Radial position of a point on the impeller, m 

cR  =Radius of curvature along a channel, m 
s = Distance from the entrance tip of impeller or 

diffuser to certain location on the streamline, m 
U  =Peripheral velocity, m/s  
V  =Absolute flow velocity, m/s 
Vr  =Radial absolute velocity of fluid, m/s 
Vθ  =Peripheral absolute velocity of fluid, m/s 

Vz  =Axial absolute velocity of fluid, m/s 
W  =Relative flow velocity between the fluids and 

the channel, m/s 
zyx ,,  =Cartesian coordinates, m 

ccc zyx ,,  =Center coordinates of the approximate circular 
interval of the channel, m 

z =Axial coordinate from pump intake to 
discharge, m 
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Greek 

β  =Blade angle, which is the angle between the 

outward blade tangent and the peripheral line 

opposing the rotating direction 

1β  =Entrance blade angle;  

2β       =Discharge blade angle 

γ  =Angle between the tangent of the blade and the 

plane perpendicular to the axis 

baseshockp ,∆  =Shock loss at base rotational speed, Pa 

stagep∆   =Pressure increment per stage, Pa 

ε  =Absolute roughness of the channel, m 

θ   =Tangential angle coordinate 

lµ  =Liquid viscosity, Pa.s 

lρ  =Liquid Density, kg/m3 

ω  =Angular velocity of impeller or diffuser, rad/s 

 impellerω  =Angular velocity of the rotating shaft or of the 

impeller, rad/s 

Subscripts 

1  =Entrance 

2   =Discharge 

1,2,3 =Any three points along the channel 

bep =Best efficiency point 

c =Center of a circle 

curvature =channel curvature, “straight” or “curved” 

effect  =“rectangular”, “curved”, or “rotational” 

eq =Equivalent 

Eye =Impeller eye 

f =Friction 

H =Hydraulic 

l =Liquid 

laminar =Laminar flow 

movement  =Channel movement, “stationary” or “rotation” 

next =Next 

r =Radial 

s =Stream line 

shape =cross section shape, “rectangular” or “circular” 

shock =Shock loss 

turbulent  =Turbulent flow 

v  =Vertical 

z  =Axial from pump intake to pump discharge 

θ   =Tangential 

Ω   =Rotational 
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Table 1 – Input Data for the Impeller and Liquid 
Properties 

 
Angular velocity 2915      rpm 
Shaft outer radius 0.007     m 
Impeller Entrance radius 0.029     m 
Impeller Discharge radius 0.048     m 
Liquid Density 1000      kg/m3 
Liquid Viscosity 1e-3       Pa.s 
Channel Wall Roughness 1e-4       m 

 

 
 

 
 
 
 

 
 

 
 

Table 2 – Input Geometric Data for the 
 Impeller and Diffuser 

 
Data 
 

Impeller 
 

Diffuser 
 

 
38° 10° 

 
23° 85° 

 
0° 30° 

 
0° 80° 

Number of Channels 7 8 

Channel Height 0.01 m 0.01 m 

h_entranceβ

discharge h_β

entranceγ

dischargeγ

 
 
 

                                                              

s                       

θ       
                        

ω                 impeller 

Impeller Entrance       
Impeller Discharge       

 

Figure 1 – Sketch of a radial impeller’s geometry 
 
 

0

5

10

15

0 200 400 600 800 1000 1200 1400
Flow Rate (m3/d)

H
ea

d 
(m

)

Catalog
Friction Model

 

Figure 2 – The Matched Frictional Model Curve and Catalog Curve 
at the Best Efficiency Point 
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Figure 3 – The shape of A Channel Cross Section 
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Figure  4 – Radius of Curvature along a Three-Dimensional 
Channel 
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Figure 5 – A Pump Stage of the Pump 
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Figure 6 - Pump Performance for different Rotational Speed for Water 
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Figure 7 - Viscous Effects from Model under Single-Phase Flow

 
 


