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Abstract

This paper presents a new incompressible single-phase model
for ESP’s head performance. Sachdeva (1988) and Cooper
(1966) developed models for ESP channels [1, 2] and for
inducers [3], respectively. The model presented in this paper is
based on one-dimensional approximation along an ESP
channel. The new derived pressure ODE (Ordinary
Differential Equation) for frictionless incompressible flow is
consistent with the pump Euler equation. New models for
pump frictional and shock losses have been proposed. Finally,
a comparison between the predicted pump performance and
the pump performances from Affinity Law for different
rotational speeds is presented. The single-phase model can
predict ESP performance under different fluid viscosities and
also is the basis of gas-liquid model for ESP’s head
performance.

Introduction

This paper presents the new single-phase model developed for
the prediction of an ESP’s performance. The correct ESP head
performance is critical for the appropriate design, simulation
and troubleshooting of an ESP installation. The model consists
of the mass and momentum equations, based on the streamline
approach or one-dimensional assumption. In the momentum
equations, the calculation of the friction factor proposed by
Sachdeva, is improved by incorporating the channel curvature,
channel rotation, and channel cross-section effects. A new
shock loss model including rotational speeds has been
proposed. The new single-phase model is capable of
predicting the pump performance for different rotational
speeds and for different viscosities.

Literature Review
Sachdeva (1988, 1994) derived the frictionless pressure ODE
under incompressible single-phase flow as follows,

1 d 1d >

— L -, (1)
p, dr 2 dr

where p is pressure, @ is angular velocity, r is radius along

the channel, p,is liquid density, and V, is the radial

component of absolute velocity.

Sachdeva’s previous equation needs to be extended for any
blade angle in an ESP.

The frictionless pressure ODE given by Cooper (1966) for
an inducer [3],

d—p:a)zrdr—WdW, 2)

P
where W is the relative velocity.

Different investigators such as Sachdeva and Cooper
superimposed frictional losses into their frictionless pressure
ODE.

The friction factor in Sachdeva’s frictional loss model
considers the effects of curvature for the diffuser and both
curvature and rotational speed for the impeller.

Sachdeva’s approach for friction factor calculation is very
important to model pump performance. His approach assumed
smooth surface and turbulent flow regime inside ESP
channels.

Mass Balance Equation
The derivation of the one-dimensional mass balance equation
[4] yields the following expression along the channel in an
impeller or diffuser.
) 1 :
—(p,)+‘——(rp,Wsmﬁ):0, 3)
ot rsin B ds
where [3 is the geometric blade angle as shown in Fig.1, s is

the streamline coordinate, which is the distance between the
entrance to any location along the channel, and ¢ is time. The
streamline in this one-dimensional model is at the center of the
channel and has the same shape as its two blades.

For steady-state incompressible liquid flow along the ESP
channel, the relative velocity W can be expressed as,

[ —
2nrHsin B
where (), is the liquid flow rate and H is the channel height.

(4)
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Pump Head Equation wage =

The head developed by each pump stage includes two parts: 5 ) 5 5 ) 5

impeller head and diffuser head. The equations for the , -1 " U, -U, " wm-w, (11)

frictionless case will be presented first. Details of the
derivation of the frictionless pressure and head equation can
be found in Sun (2002) [4]. Later in this section, the final
form of the model, including friction, will be presented.

Frictionless Pressure and Head Equation. If the fluid
friction is neglected, the pressure ODE along the channel at
radius 7 is,

ap
dr streamline
W ds 5
-p,——+p,® , (%)
B P % d p,@r
aw '’ ds
Bl P8
2 dr d

streamline
where g is the gravitational acceleration in the streamline

direction, subscript s signifies the streamline.
The steady-state frictionless pressure ODE along an ESP
channel can be simplified as,

aw’
dp =(p,@*r)dr-p, %_ P, gds, ©)

After integration of the pressure ODE along the streamline,
the pressure increment in the impeller can be expressed as,

Pr,—P =
o’r,’ —0*
2 , (7)

2 2 !

+sz+g(Zvl _sz)

where subscript / indicates the entrance of an impeller or a
diffuser, z
the impeller entrance and discharge, respectively.

By definition, impeller head can also be expressed as,

2 2
_P— D " Vv, ="
impeller ~—
P& 2g

where V is the absolute velocity.

Combining the previous two equations, the impeller head
becomes,

1> Z,, are the vertical components of the z value at

H

+ (Zv2 - Zvl) 4 (8)

Himpeller =
v,) -y U -u’t owe-w,t ©)
+ +
2g 2g 2g
where U is the peripheral velocity, which can be expressed as,
U=wr. (10)

The velocity relationship along a radial impeller channel can
be illustrated as Fig. 1.

Since the frictionless diffuser head is zero, the frictionless
pump head for a stage is equal to the impeller head,

2g 2g 2g

It is documented that the pump head derived from the new
frictionless model for a stage is the same as the Euler head [5].
Therefore, the new frictionless pressure ODE is correct. The
Euler pump head H, is,
V22—V12+U22 _U12+W12_W22 | 12

2g 2g 2g

Using the velocity relationships, the Euler head can also
expressed as,

2
He:Uzz -U," WU, cos B, —U, cos B . (13)
g g
Finally, the Euler head H, can be expressed as,
2

H =w—(r22 —;’12)
g

H,=

e

(14)

Qo 11
2rgH| tan B, tanp,
The gravitational term in equation (6) is small compared to
the centrifugal force and can be neglected. The final
frictionless pressure equation agrees with Eq. 2 presented by
Cooper (1966) [3].

Pressure and Head Equation Including Friction Losses.
When fluid friction is considered, the friction loss term can be
superimposed onto the pressure frictionless ODE equation.
The pressure distribution ODE at the radial position 7 along an
ESP channel then becomes:

dw '’
dp=p,0°rdr—p, +d_p dr—p,g. ds> (15)
2 dr ),

where (d_p) is the pressure radial gradient due to fluid
f

i

friction, which can be related to a pressure gradient (@)
ds
s

along the channel length position s as,

dp | _(dp) ds
(dr)f_(ds)fdr’ (16)

the relationship between s and r can be expressed as,
ds _ J
dr_sinﬁh cosy’ (17
and j=1 for impeller and j=-1 for diffuser. If the channel has a
hydraulic diameter d ; and the fluid is moving with a relative

velocity W to the channel, the term (@) is given by,
s
A
dp w?
sl =— f L_ , (18)
ds ), d, 2

where f'is a friction factor. Expression for the friction factor f
will be discussed in a later section.
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Equation (15) is valid for impeller (@ = ® ) and

impeller

diffuser (@ =0), where @,

mpeller 15 the impeller angler
velocity.

The pump head per stage without shock losses can be
calculated using the pressure increment between the impeller
eye and the next stage of the impeller eye, as follows,

H‘Ymge — pnext _Eye pEye ’ (19)

P8

where pp,, is the impeller eye pressure of the stage intake,

PrextEye 18 the impeller eye pressure of the next stage.

The shock losses in the single-phase condition can be
estimated with Pfeiderer and Peterman’s (1986) formula [6].
In this study, the shock losses for water is calculated using the
head difference, as shown in Fig.2, between the head
performance for water from the frictional model and the actual
pump performance from the manufacturer. The shock losses

for water at certain rotational speed, AH can be

shock ,water ,base °
regressed as a quadratic equation as follows,

AH shock ,water base —

X , (20)
axhock,baste + bxhock,baste + cxhock,base

b

are corresponding to the water shock losses at certain
rotational speed, called base rotational speed.

In this study, the shock losses for different rotational
speeds is assumed to follow the affinity laws. Then the head
shock loss for any single-phase liquid property under any

where the three coefficients a c

shock ,base * ~ shock ,base ** shock ,base

rotational speed @.

impeller 1S PrOPOSed as,

2

AH _ wimpeller
shock,] —

impeller ,base

2

wimpeller base . (2 1 )

ashock ,base QI

impeller

(0)

impeller base

+ bxhock ,base QI +c

shock ,base
impeller

Accordingly, the pressure shock losses can be proposed as,

Apshock,l =

2
a shock ,base Ql

o, 22)
impeller
plg +bsh0ck,baxe Ql

impeller ,base

2
(0]

impeller

+c

shock ,base

impeller ,base

Finally, the pump pressure increment and pump head per
stage will be as follows, respectively,

Apstage = pnext _Eye pEye - Apshock,tp > (23)
and,
Ap stage
Hstage = e : (24)
P8

Calculation of Friction Factor

To calculate the friction factor, the hydraulic diameter is
needed and is related with the cross-section geometry. An ESP
channel has a near rectangular cross-section with a channel
width a and a channel height b, as shown in Fig.3. They can be
obtained from the geometric relationship,

0= ng, (25)
n
b=H | (26)

where 7 is the number of impeller blades or diffuser blades .
The hydraulic diameter, d . » can be expressed as,
_ 2ab

Ca+b’

dy (27)

Reynolds Number. The friction factor depends on whether
the flow regime occurring in the channel is laminar or
turbulent. The determination of the flow regime depends on

the Reynolds number Ny, which is related to the relative

velocity W along ESP channels as,
d, W
Np =22P1, (28)
My
where U, is liquid viscosity.

Here, the friction factor for circular, straight stationary
pipes will be presented, since it will be used as the starting
point for inclusion of the mentioned characteristics of ESP
channels.

Friction Factor for Straight Stationary Pipes with Circular
Cross Sections. For flow inside a straight stationary pipe with
circular cross section, namely, for flow inside a normal pipe,
the transition between laminar and turbulent flow occurs at a
critical Reynolds number as follows,

(NRC )critinnrmal =2300. (29)

In the rest of this document, one can adopt the following
nomenclature for friction factor,

ﬁhape, curvature, movement

The first subscript, “shape”, indicates the shape of the
cross-section in the channel; the second subscript, “curvature”,
indicates if the channel is curved or straight; the third
subscript, “movement”, indicates if the channel is stationary or
rotating.

The friction factor for laminar flow in a circular, straight,
stationary pipe is given by,
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64
f(‘:ircular,straight,stationary = N : (30)
Re

The friction factor for turbulent flow in a circular, straight,
stationary pipe is given by Churchill (1977) [7] as follows,

f‘c[rclar,stmight,smti()nary -
— ~4-2

1 , 3D

[00]

2.457In

7 0.9
] to27 &

Re H

where € is the absolute roughness of the channel.

Friction factor effects. The friction factor used in a straight,
stationary pipe with a circular cross section is not applicable to
ESP impeller and diffuser channels. An ESP channel has a
rectangular cross-section, is curved and the impeller rotates
during operation. The flow inside this geometry is very
different from the one encountered inside straight, stationary
pipes with circular cross-sections. The presence of secondary
flows inside the impeller and diffuser channels must be
considered as pointed out by Schlichting (1955) [8] and Ito
(1971) [9].

Several investigators have studied the effects of channel
curvature, cross-section shape, and rotational speed on the
critical Reynolds number and on the friction factor.
Unfortunately, though, the effect of each of these factors was
studied independently of each other.

Sachdeva (1988, 1994) incorporated the one or two effects
together for an ESP diffuser or impeller, which is very
important for the friction factor calculation. In this study, the
modified critical Reynolds Number and friction factor
corrections presented in the later sections are an
approximation of what occurs in an ESP channel when more
than one of those factors is actually influencing the flow
simultaneously.

Here, each independent effect is presented first.

Cross Section Shape Effect. Since only the shape effect is
being considered, the flow regime can be determined using the
Reynolds number for cross-section effect. The works of Shah
(1978) [10] and Jones (1976) [11] will be used to calculate the
shape effect on the friction factor for laminar and turbulent
flow, respectively.

Critical Reynolds number. The critical Reynolds Number
for flow regime transition due to shape effect is:

(NRC )critirecta ngular =2300. (3 2)

Laminar Flow. IfNReJ < (NRe )c then laminar

rit_rectangular

flow occurs.

The effect of the rectangular cross-section shape on the
friction factor for straight, stationary pipes in laminar flow has
been studied by Shah (1978).

The “laminar equivalent diameter” deq , which is defined

based on the work of Cornish (1928) [12], can be used to
calculate the friction factor under laminar flow.

deq=|:§+%l (2—1)]dH, (33)
where [ is the aspect ratio of the rectangular cross section for
liquid defined as,

_ min(a ,b)
B max(a ,b )’ 69

The corresponding equivalent Reynolds number N, Re_eq
is:

NReieq = w . (35)

K,

For fluid flowing in a rectangular cross-section, straight,
stationary pipe under a laminar flow, the friction factor as
presented by Shah (1978) is,

64
f;ecta.ngula r,straight, stationary N : (36)
Re eq
The multiplication factor F}ectmgular under laminar flow for

a diffuser or an impeller with a rectangular cross section can
finally be written as,

F _ f;ecta.ngula r,straight, stationary
rectangular
f;ircular, straight, stationary
| . (37)
T2 011
“r1@-)
3 24
Turbulent  Flow. If  Np, > (N, )critﬁcmgular , then

turbulent flow occurs.

The effect of the rectangular cross-section shape on the
friction factor for straight, stationary pipes in turbulent flow
was studied by Jones (1976) [11].

The author suggested that the “laminar equivalent

diameter”, deq, also be used to calculate the friction factor

under turbulent flow.

The friction factor for turbulent flow in a smooth, straight,
stationary pipe with rectangular cross-section can be expressed
by the Blasius equation based on the equivalent Reynolds
number.

=0316xN, 7. (38)

f;ectan gular, straight, stationary Re_eq

One can then obtain the multiplication factor, F}ectmgular ,

under turbulent flow for a diffuser or impeller with a
rectangular cross section as:
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_ ﬁectangular,straight, stationary _ f;ircular, curved, stationary _1
rectangular curved f -t (42)
f;ircular, straight, stationary circular, straight, stationary
1 : (39)
= 035 (b) Curvature Effect Approach
2 + 11l 2-1
5 g ( ) If the ratio between the radius of curvature R, and

Pipe Curvature Effect. The pipe curvature effect on the
friction factor for circular cross-section, stationary pipes has
been studied by Ito (1959) [13]. The pipe curvature effect
changes the criteria for determination of the flow regime and
calculation of friction factor.

Ito (1959) presented criteria to determine the importance of
the curvature. If the radius of curvature is large, compared to

the hydraulic radius 7, , then the channel can be treated as a

straight pipe. If the radius of curvature is small, in comparison
to the hydraulic radius, the author presented a new critical
Reynolds number for the flow regime transition and a new
expression for calculating the friction factors.

Critical Reynolds Number. The transition from laminar to
turbulent flow then occurs at a critical Reynolds number,

(Nre)erit curvea » Which is a function of the channel radius of

curvature, R, , and the hydraulic radius, 7, , as follows,
(NRc )critﬁcurved =

] . (40)

0.32
2><104><(%} it X _g60,

RC

2300 if =860

Ty
where 7, is the hydraulic radius based on the hydraulic
diameter given by,

v, =——. (41)

Laminar Flow Friction factor. If the Reynolds number is
less than the critical Reynolds number, namely,

NRe S(]\]Re)

The laminar flow friction factor also depends on the ratio
between the channel radius of curvature and the channel
hydraulic radius.

crit curved » then the flow is laminar.

(a) Straight Pipe Approach
If the ratio between the radius of curvature, R., and

hydraulic radius, 7,

- 18 equal or greater than 860, namely

C

> 860 |, the pipe can be considered straight and the
Ty

curvature multiplication factor, F, ., is,

R, <860 |,

Ty

hydraulic radius 7, is less than 860, namely,

curvature effects must be considered. The friction factor for
laminar flow in curved pipes was obtained in this study by
fitting White’s (1929) empirical curve [13] sketched in Ito
(1959), as follows,

Rc
ﬂircular, curved, stationary =
H
|: -0.611
Ty \05
N () ] : (43)
R
1.5y=——F7T7"—

53

Finally, a multiplication factor for the curvature effect

F,eq 1s Obtained as,

F _ f;ircular, curved, stationary
curved f
circular, straight, stationary

0.1945 (44)

=0.266N,,"™| -

c

Turbulent Flow. If the Reynolds number is larger than the
critical Reynolds number, namely, Ny, > (Ng,)

crit_curved >
then the flow is turbulent.

There are two sets of turbulent friction factor formulas
available [13]. They were derived by using two different
velocity profile assumptions. One is derived by using 1/7" —
Power Velocity Distribution Law. The other is derived by
using the logarithmic velocity distribution law. The
assumption of 1/7™ — Power Velocity Distribution Law is used
in this study. Based on Ito’s work, the following expression
can be used for the multiplication factor for curvature effect in
turbulent flow.

(a) If Ny, (v, /R,)’ =300, then,

_ f;ircular, curved, stationary

curved — f
circular, straight, stationary

0.05 (45)

7,
= NRe (Ri)z

c

(b) If 300 > N, (7, / R,)* > 0.034, then,
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_ f;ircular, curved, stationary __ A12 = 2(y2 - yl) > (53)
curved — - — —
f;ircular, straight, stationary ( 4 6) A13 - 2(222 il) ’ 5 5 5 5 (54)
= 0.092[ N (1) +0.962 Dimn ma t s A Y
= 009N, : Ay =2(x, —x,). (56)
A, =2(y, —
(©) 1t Ny (1, / R.)? 0034, then, 2 =205 =5) 7
f Ay =2zy —2z)) (58)
__Jcircular, curved, stationary __ 2 2 2 2 2 2
curved_f =1. (47) D2:x3 - X +y3 - +Z3 —Zy (59)
circular, straight, stationary
ozl
Radius of Curvature. The channel or streamline radius of A, =detly, =z, 1], (60)
curvature is an important parameter in calculating the friction
factor for curvature effect. vy oz 1
In this study, a general equation for the three-dimensional 1
channel radius of curvature [4] was derived, which is valid for YA
radial and mixed pumps. The radius of curvature, R, for a Ay, =—detlx, z, 1, (61)
point with coordinates X,, y,,Zz, is: x5z 1
Rc = (48) xl y 1 1
2 2 2° =
\/(‘xc - xl) + (yc - yl ) + (Zc - Zl) A33 det xz y2 1 ’ (62)
where Xx_,).,z, are the center coordinates of the Xy 1
ipproximate circular interval of the channel, as shown in Fig. X, Y, oz
’ D, =detlx, y, z,|, (63)
D, 4, A, X3 Vs 23
det D, A22 A23 For a radial pump, the channel radius of curvature, RC ,
D, A4, A, can be expressed by a simpler formula [4]:
X, = , (49) 1 1
An Alz A13 R, =— .
detld,, A4, A nf B0, ] “
Clidy Ay Ay dr  rtanf
A, A4, Ay, The derivations for the channel radius of curvature and a
comparison between results from Equations (48) and (64) for a
A, D, A
11 1 13 radial pump can be found in Sun (2002) [4]. The results show
detl4,, D, A, a good match between both equations.
_ 4y, Dy Ay Rotational Speed Effect. The rotation effect on the friction
Ye= A A 4.1 (50) factor for straight pipes with circular cross-section was studied
i 12 13 by Ito (1971) [9].
deti4,, A4, A, Ito (1971) suggested that the flow regime and friction
i i 4 factor for rotational pipes were influenced by rotational
3 2 + Reynolds number Ny, defined by,
A4, 4, D wd 2p
det|l4,, A4,, D, Nreo :—Z L (65)
1
s = 4y A, Dy (51) If the rotational Reynolds number is less than 28, the pipe

can be considered stationary. If the rotational Reynolds
number is equal or greater than 28, rotational speed effects
must be considered.

—_
—_
—_
[SS]
—_
)

[oN
)
NIEEN
moa A
moa A

%)
—_
[
5]
%)
%

Critical Reynolds Number. The transition criteria
and, distinguishing laminar and turbulent flow occur at a critical
A4, =2(x,—x,), (52) Reynolds number function of the rotational Reynolds number.
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(N Re )critirotat ion = _ f;ircular, straight, rotation
023 . rotation
1070(NReQ) ’ lf NReQ > 28 . (66) f;ircular, straight, stationary - (73)
. 0.282
2300 if Ny, <28 =0.942+0.058K 10
() If K pye > 15 then,
Laminar Flow. If Ny, < (NRe )crit otation » then the flow is
. - _ f;ircular, straight, rotation
laminar. rotation
The friction factor for a rotating pipe under laminar flow fcircular, straight, stationary - (74)
i ; ; 0.05
conditions depends on the dimensionless parameter K, . . =0.942K oo

defined as,
Klaminar = NReQ Re * (67)

The following are the expressions of the rotating
multiplication factor under laminar flow.

<220 and h < 0.5 then,

Re

) If K

laminar

_ ﬂircular, straight, rotation ~ __ 1

(68)

rotation
ﬂircular, straight, stationary

N
<107 and =22 < 0.5 then,
Re

(b) If 220 < K

laminar

_ f;ircular, straight, rotation
rotation

f;ircular, straight, stationary . (69)

0.0883K > (1 11.2K 0 )

laminar
N,
(c) If —R£> 0.5 then,
Re

_ f;ircular, straight, rotation
rotation

f;ircular, straight, stationary

_0.0672Ny%,
1-2.11N%

(70)

Turbulent Flow. 1f Ny, > (N, Re) then the flow

crit_rotation °

is turbulent.
The friction factor for a rotating pipe under turbulent flow

conditions depends on the dimensionless parameter K, ; i

defined as,

_ We)

turbulent — N,
Re

The following are the expressions of the rotating
multiplication factor under turbulent flow.

(@ If K <1 then,

(71)

turbulent

_ ﬂircular, straight, rotation ~ __ 1

(72)

rotation
ﬂircular, straight, stationary

b) F1SK e S 15 then,

Calculation of Friction Factor for Impeller and
Diffuser Channels. The equations presented in previous
sections enables the determination of the critical Reynolds
Number, flow regimes, and friction factor taking into
consideration the cross-section shape, curvature and rotational
effects once at a time.

In actual ESP, the diffuser channel is subjected to two of
those effects simultaneously, whereas the impeller channel is
influenced by all three effects. In this way, the flow regime
and friction factor in an actual ESP channel should take into
consideration a superimposition of those effects.

Critical Reynolds Number and Flow Regime. In this
study, Critical Reynolds Number with Increment
Superimposition is proposed as follows.

The two critical Reynolds numbers under the two
simultaneous effects: rectangular and curvature effects in a
diffuser have a same value as follows:

(NRe)critﬁeffect,diffuser = (NRe )cr[tinorma/

1+ (NRe)critirectmgular -1
% (NRe )cr[tinorma/ ) (75)
+ (NRe )critﬁcurvai -1
i (N Re )cr[tinorma/

For an impeller, the three critical Reynolds numbers under
the three simultaneous effects: rectangular, curvature, and
rotational effects in an impeller have a same value as follows:

(N Re )critieffect,impeller = (N Re )critinormal

1 + (NRe )critﬁrectangular _ 1

(N Re )critinormal

(NRc )critﬁcurved 1 (76)

( Re )critinormal

(N Re )critﬁrotation

(NRC )critinormal

X

-1

Friction Factor. Superimposition of multiplication factors
adopted by Sachdeva (1988) [1, 2] is used in this study. It is
assumed that each individual effect multiplication factor can
be superimposed to obtain the total friction factor for an



SPE 80925

impeller or diffuser. An additional rectangular multiplication
factor is included into the new model in this study.
Therefore, the friction factor for an impeller,

f;mpeller =

) (77)
F'recta.nglar F'curved erotation ﬂircular, staight, stationary
and the friction factor for a diffuser,
f;liffuser =
(78)

F

rectanglar © curved ./ circular, staight, stationary

Boundary Conditions

To solve the pressure distributions along the impeller and
diffuser, the boundary conditions of pressure and velocity are
needed.

Pressure Boundary Conditions. The entrance pressure in an
impeller is the starting point when one calculates the pressure
distribution along the impeller channel. Assuming no losses
between the impeller eye and the impeller entrance and using
Bernoulli’s equation, one obtains,

p impeller_entrance p Eye

P&
i L (79)
+ I/impellerﬁent:rance - VEye — 0
2g
where Vi ciier enmance 1S the fluid absolute velocity at the

impeller entrance; VEye is the fluid absolute velocity at the
impeller eye. P ciier entrance 1S the pressure at the impeller

entrance; Pg,, is the pressure at the impeller eye. Then, the

impeller entrance pressure can be related to the impeller eye
pressure as,

p impeller_entrance = p Eye

Pl Ve ) o

impeller_entrance

2
After the discharge pressure in the impeller is obtained,
one must have the entrance pressure in the diffuser to continue
calculating the pressure distribution along the diffuser.

Similarly, the diffuser entrance pressure P s entrance
can be related to the impeller discharge pressure

p impeller_discharge as,

p diffuser_entrance = p impeller_discharge

(81)

2 2
p L (Vdiffuserientrance - I/impellerﬁdischa.rgf:: )’
2

is the relative fluid velocity at the

where Vdiffuserie ntrance

diffuser entrance; V; is the absolute fluid velocity

impeller_discharge

at the impeller discharge.

Similarly, the impeller eye pressure at the next stage
DPrext Eye Can be related with the diffuser discharge pressure

p diffuser_discharge as,

p next Eye = p diffuser_discharge

Vi) (82)

v -
+ p L \" diffuser discharge next_Eye
2

iffuser_discharge

diffuser discharge; V.

next_Eye

where ¥ is the fluid absolute velocity at the

is the fluid absolute velocity at

the next stage of the impeller eye, and V., =V, for

ye next_Eye
single-phase incompressible flow.

Velocity Boundary Conditions. In addition to the pressure
boundary conditions, the actual flow angles at the impeller
entrance and discharge can affect the velocity boundaries. The
calculation approach of the actual fluid angles at the impeller
entrance and discharge in this study can be found in next
section.

Results

Input Data. An example of the input data under single-phase
flow is shown in Table 1 and Table 2. The single stage of the
pump is shown in Fig.5.

Comparison between model results and experimental
data. The first step is using water to obtain the actual flow
angles at the impeller entrance and discharge by adjusting the
two actual flow angles and matching the performance from the
frictional model with the performance from the manufacturer
at a level near the best efficiency point. The matched pump
performances are shown in Fig.2.

In this example, the geometric angles were estimated
visually. If the actual geometric angles are given by the
manufacturer, then the values in Table 1 and Table 2 can be
replaced by the accurate values, and the actual flow angles of
the impeller should be adjusted again.

For simplicity in this example, the actual flow angles of
the impeller were assumed the same as the impeller’s
geometric angles, since no accurate impeller geometric angles
were available. Finally, the actual flow angles of the impeller
were obtained through performance matching as shown in
Fig.2. The actual flow angle projection on the plane
perpendicular to the axis at impeller discharge was obtained as
23°. The actual flow angle projection on the plane
perpendicular to the axis at impeller entrance was obtained as
38°.

In this example, the head difference in the Fig.2 is the
shock loss for water at a base rotational speed 50 HZ, which
can be regressed as,

Ah =3.3x10"°0;

shock ,base

: (83)
—5.122x107°Q, +2.042
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Therefore, the three coefficients in this example are:

=3.3x10"°, b =-5.122x107,

a shock ,base
=2.042.

shock ,base

c

shock ,base

Affinity Law. The second step is to predict the pump
performance for different operation conditions. The predicted
pump performance for different rotational speeds for water is
shown in Fig.6, which has the almost same value as the pump
performance for different rotational speeds from the Affinity
Law, using a base of 50 HZ performance.

Model Capability. The model is capable of predicting pump
performance for different rotational speeds and different liquid
properties, such as viscosities under single-phase flow, as
shown in Fig.7, which must be verified when the experimental
data are available.

Conclusions

A new one-dimensional single-phase liquid model has been
developed for different ESP pump types, liquid properties, and
motor rotational speeds.

e A pressure frictionless ODE was derived for an ESP
pump. It has been verified through integration and
comparison with Euler head equation.

e The model for wall friction factor to account for the
three effects was improved. A new equation to decide
the critical Reynolds number in ESP is proposed and
needs to be verified.

e A new shock loss model including rotational speed
has been proposed and verified after comparing the
model results with the head performances from
manufacturer for different rotational speeds.
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Nomenclature
=Channel width, m
=Channel height for impeller or diffuser, m

eq =Equivalent diameter, m

QU & &

o =Hydraulic diameter, m

= Pressure radial gradient due to fluid friction,

~ VO
SIS
\;/

Pa/m
= Friction factor
" = Blasius friction factor for smooth, straight
pipes
curved =Curvature multiplication factor

rectangular~ —Multiplication factor of rectangular effect

9
g =Gravitational acceleration, m/s”
H =Channel height, m
J =Indicator for impeller or diffuser, j=1 for the

impeller and j=-1 for the diffuser
laminar =Dimensionless parameter for a rotating pipe

under laminar flow conditions for liquid

K\ uer  =Dimensionless parameter for a rotating pipe
under turbulent flow conditions for liquid

/ =Aspect ratio of the rectangular channel

n =Channel numbers

N, =Reynolds number

(N o) wit curved =Critical Reynolds number for curvature effect

(N Re )crit orma —Critical Reynolds number for a normal pipe,

namely, a straight stationary pipe with circular
cross section

(N Re )Crit rectangular =Critical Reynolds number for rectangular

effect
(N Re )Crit rotation —Critical  Reynolds number for rotational
effect
Nie o =Equivalent Reynolds number
N, =Reynolds Numbers for liquid
Ni.o =Rotational Reynolds number
0 bep =Flow rate at the best efficiency point, m’/s
H bep =Pump head at the best efficiency point, m
p =Pressure, Pa
P ke =Impeller eye pressure of the stage intake, Pa
Prewt e  —Impeller eye pressure of the next stage, Pa
AP oo =Shock loss, Pa
0, =Liquid flow rate, m’/s
r =Radial position of a point on the impeller, m
R, =Radius of curvature along a channel, m
§= Distance from the entrance tip of impeller or
diffuser to certain location on the streamline, m
U =Peripheral velocity, m/s
V =Absolute flow velocity, m/s
V. =Radial absolute velocity of fluid, m/s
V, =Peripheral absolute velocity of fluid, m/s
VZ =Axial absolute velocity of fluid, m/s
w =Relative flow velocity between the fluids and
the channel, m/s
X, V,Z =Cartesian coordinates, m

X.,¥.,Z, =Center coordinates of the approximate circular

interval of the channel, m
z =Axial coordinate from pump intake to
discharge, m
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Greek

B
B,

Ap

shock,base

Ap stage

U,

P
(0]

wimpeller

Subscripts
1

2

1,23

bep

c
curvature
effect

eq

Eye

f

H

/

laminar
movement
next

-

s

shape
shock

=Blade angle, which is the angle between the
outward blade tangent and the peripheral line
opposing the rotating direction

=Entrance blade angle;

=Discharge blade angle

=Angle between the tangent of the blade and the
plane perpendicular to the axis

=Shock loss at base rotational speed, Pa

=Pressure increment per stage, Pa

=Absolute roughness of the channel, m
=Tangential angle coordinate

=Liquid viscosity, Pa.s

=Liquid Density, kg/m’

=Angular velocity of impeller or diffuser, rad/s
=Angular velocity of the rotating shaft or of the

impeller, rad/s

=Entrance

=Discharge

=Any three points along the channel

=Best efficiency point

=Center of a circle

=channel curvature, “straight” or “curved”
=“rectangular”, “curved”, or “rotational”
=Equivalent

=Impeller eye

=Friction

=Hydraulic

=Liquid

=Laminar flow

=Channel movement, “stationary” or “rotation”
=Next

=Radial

=Stream line

=cross section shape, “rectangular” or “circular”

=Shock loss

SPE 80925
turbulent ~ =Turbulent flow
A =Vertical
z =Axial from pump intake to pump discharge
0 =Tangential
Q =Rotational
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Table 1 — Input Data for the Impeller and Liquid Table 2 — Input Geometric Data for the
Properties ;
P Impeller and Diffuser
Angular velocity 2915  rpm
Shaft outer radius 0.007 m Data imoeller | Diffuser
Impeller Entrance radius 0.029 m P
Impeller Discharge radius | 0.048 m
Liquid Density 1000 kgim® B entrance 28° 10°
Liquid Viscosity 1e-3 Pa.s
Channel Wall Roughness | 1e-4 m
Bh7 discharge 23° 85°
,}/entrance 0° 30°
Ydischarge 0° 80°
Number of Channels | 7 8
Channel Height 0.01m 0.01m

e /> N impeller
W

o
BZ?&& g bk
» STREAMLINE, S

'
-+

1 LINE OF
B TANGENT
| AT INLET

Figure 3 — The shape of A Channel Cross Section

Impeller Entrance

Impeller Discharge
Channel
Figure 1 — Sketch of a radial impeller’s geometry
(X1, y1,21)
15 1
Catal (X2,¥2,22)
4 Catalog
——Friction Model 0 (X3 23, 23)
_ 10
E
-}
3
x 54
Figure 4 — Radius of Curvature along a Three-Dimensional
0 T T T T T T T Channel
0 200 400 600 800 1000 1200 1400

Flow Rate (m®/d)

Figure 2 — The Matched Frictional Model Curve and Catalog Curve
at the Best Efficiency Point



12

SPE 80925

Figure 5 — A Pump Stage of the Pump
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Figure 6 - Pump Performance for different Rotational Speed for Water
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Figure 7 - Viscous Effects from Model under Single-Phase Flow



