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A new technique is presented for analyzing pressure
transient data for wells intercepted by a finite-
conductivity vertical fracture. This method is based
on the bilinear flow theory, which considers transient
linear flow in both fracture and formation. It is
demonstrated that a graph of Pys VS t”* produces a
straight line whose slope is inversely proportionai to
hyelksby) Y2 New type curves are presented that
overcome the uniqueness problem exhibited by other
type curves.

Introduction

A large amount of information concerning well test
analysis has appeared in the literature over the last
three decades. As a result of developments in this
area, three monographs!*®? and one book* have
been published covering different aspects of pressure
transient analysis. Ramey® also has presented a
review on the state of the art.

The analysis of pressure data for fractured wells
has deserved special attention because of the number
of wells that have been stimulated by hydraulic
fracturing techniques. A summary of the work done
on flow toward fractured wells’ was presented by
Raghavan® in 1977.

It was recognized early that intercepting fractures
can strongly affect the transient flow behavior of a
well”® and that, consequently, the application of
classical methods!%12 to the analysis of transient
pressure data in this situation may produce erroneous
results. Several methods!3-?* were proposed to solve
this problem.

These analysis techniques consider a well in-
tersected by either an infinite-conductivity vertical
fracture or a uniform-flux vertical fracture. Cinco-
Ley et al. demonstrated that the assumption of
infinite fracture conductivity is valid whenever
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the dimensioniess fracture conductivity
(kfbf/kxf)2300; all other cases, such as those
represented by long or poorly conductive fractures,
must be analyzed by considering a finite-conductivity
fracture model.

Exploitation of low-permeability gas reservoirs has
required stimulation of wells by massive hydraulic
fracturing (MHF) techniques. Vertical fractures of
large horizontal extension are created as a result of
this operation; consequently, pressure drop along the
fracture cannot be neglected.

Several papers?32 have been published on the
behavior of finite-conductivity vertical fractures.
Type-curve matching has been proposed as an
analysis method under these conditions; however,
some regions of the curves present a uniqueness
problem in the analysis. Barker and Ramey?! in-
dicated that the use of published type curves becomes
practical when a large span of pressure data is
available.

The purpose of this work is to present a new in-
terpretation technique for early-time pressure data
for a well intercepted by a finite-conductivity vertical
fracture, including the criteria to determine the end
of wellbore storage effects. In addition, new type
curves are discussed to overcome the uniqueness
problem exhibited by previous curves at intermediate
and large time values.

Transient Pressure Behavior
for Fractured Wells

Consider a vertically fractured well producing at a
constant flow rate, ¢, in an infinite, isotropic,
homogeneous, horizontal reservoir that contains a
slightly compressible fluid of constant com-
pressibility ¢, and viscosity u. The porous medium
has a permeability k£, porosity ¢, thickness 4, and
initial pressure p;.

Let us assume that the well is intercepted by an
undeformable, fully penetrating vertical fracture of
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TABLE 1 - St PREFERRED UNITS, CUSTOMARY UNITS,
AND UNIT CONVERSION CONSTANTS

USED IN THESE SYSTEMS
Parameter
or Variable Si Preferred Units  Customary Units
k um"’ _ md
h m ft
9o m3/d STB/D
g m3/d Msct/D
" Pa-s cp
8 m3/m?3 RB/STB
b fraction fraction
¢4 Pa-! psi~?
P kPa psi
m(p) kPa?/Pa-s psi?/cp
t hours hours
ag 1,842 141.2
a 1,293 1,424
g 36x109 2.637x 104
Sbro 34.97 441
Sbrg 24,57 444,75
dito 0.3918 8.128
8y, 0.275 81.97
7 K ‘R
(o} m3/Pa cu ft/psi
WELLBORE

FRACTURE
|t

IMPERMEABLE
BOUNDARIES

|

Fig. 1 - Finite-conductivity vertical fracture in an infinite-
slab reservoir.

TDxf

Fig. 2~ Low-log graph of typical cases for fractured weils.
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half-length xg, width by, permeability k¢, porosity
¢r, and total compressibility cs (Fig. 1). The
properties of both the reservoir and the fracture are
independent of pressure and the flow in the entire
system obeys Darcy’s law. In addition, it is con-
venient to assume that pressure gradients are small,
gravity effects are negligible, and flow entering the
wellbore comes only through the fracture.

With these assumptions, the unsteady-state flow in
the system can be described by the diffusivity
equation.! For details on the boundary conditions
and a semianalytical solution for this flow problem,
see Ref. 25.

The general solution for the wellbore flowing
pressure p,, for oil is given by?’

kKh(D;—Dy)
— e o t 2Cmr) ... 1
«,qBn Pwp Dy D> Cypf) H
and, for gas,
khim(p;) —m(pr)]
= t 2 )C s
agaT Pwp ( Dxp» "D '1Df)
.................... )
where
Bkt
tDXf = Wf P I (3)
k 1
e e e SO )
P keen
and
brdrcs
Crop= _7%% e )

DPyp represents the dimensioniess pressure drop; it is
a function of dimensionless time, ¢p,., dimen-
sionless fracture hydraulic diffusivity, n/p, and di-
mensionless fracture storage capacity, Cpr. Qs Ag,
and 3 are unit conversion constants (see fg{ﬂe 1).
Cinco-Ley et al.25 showed that for practical values
of dimensionless time the pressure behavior depends
on two parameters only: the dimensionless time ¢,
and the dimensionless fracture conductivi{y
(kfbs) p. The former was defined in Eq. 3 and the
latter may be obtained from Egs. 4 and 5. By
definition, the dimensionless fracture conductivity is

-

keb
k ==L,
(ksbr) p e ©

and it appears to be related to Cipr and np as
follows.

(ksb7) p=7Crppnsp-

Fig. 2 shows the general behavior of a well with a
finite-conductivity vertical fracture. There, we show
a log-log graph of dimensionless wellbore pressure,
Pwps Vs. dimensionless time, ¢p, .. For the sake of
simplicity only two cases are presented. Case 1
represents the behavior of a low-conductivity
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Fig. 3 - Flow periods for a verticaily fractured well.

fracture (k b ) p=0.1; Case 2 considers a highly
conductive fracture, (k bf) p=500. These cases
were selected because they exhibit all the features of
the transient pressure behavior for a fractured well.

An analysis of Fig. 2 shows that the transient
behavior of a well with a finite-conductivity vertical
fracture includes several flow periods. Initially, there
is a_fracture linear flow characterized by a half-slope
straight line; after a transition flow period, the
system may or may not exhibit a bilinear flow period,
indicated by a one-fourth-slope straight line. As time
increases, a formation linear flow period might
develop. Eventually, in all cases, the system reaches a
pseudoradial flow penod (see Fig. 3).

Points A, F, and L in Fig. 2 represent the end of
the fracture linear flow period (half-slope straight
line). The bilinear flow period (one-quarter-siope
straight line) is defined by Segments B-C and G-H;
this behavior is not present when the fracture has a
high storage capacity and a high conductivity (lower
curve in Case 2).

The formation linear flow period is shown by the
half-slope straight line between Points I and J, and it
is only exhibited by fractures of high conductivity,
(Ic bs)p =>300. Points D and K show the beginning
of the pseudoradial flow period.

We present a detailed description of both the
fracturéd linear flow and the bilinear flow. The
formation linear flow and the pseudoradial flow have
been discussed in the literature, 14-15:17:19,:22,25
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Fracture Linear Flow Period

This behavior occurs at very small values of dimen-
sionless time, and it is exhibited by all cases. During
this flow period, most of the fluid entering the well-
bore comes from the expansion of the system within
the fracture and the flow is essentially linear, as
shown in Fig. 3a.

The dimensionless pressure response at the
wellbore is given by*

2
= —— t e 8
Hence, for oil,
S¢r,qB ut
Pyr=p;— e e ©)
TN bk Tkpdpcn
and for gas,
50‘ qT t
m(p,z) =m(p;) — £ e (10)
* U b T kpdguc

where 8y, and &7, are unit conversion constants.
These equations indicate that a log-log graph of

pressure vs. time yields a straight line whose slope is

equal to one half. A graph of pressure or pseudo-

pressure vs. the square root of time also gives a

straight line whose slope depends on the fracture

characteristics excluding the fracture half-length Xf.
The fracture linear flow ends when

*See Appendix A for derivation.
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P ~--- End o# Straight
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Fig. 4—p,p Vvs. 12\ for a well with a finite-conductivity
vertical fracture.

0.01 (kb
Dxf-—(Lﬂ ................. (1)

’UD
Unfortunately, this flow period occurs at a time too
early to be of practical use.

Bilinear Flow Period

To the best of our knowledge, this is a new type of
flow behavior that has not been considered in the
literature. It is called bilinear flow because two linear
flows occur simultaneously. One flow is a linear
incompressible flow within the fracture and the other
is a linear compressible flow in the formation, as
shown in Fig. 3b. A bilinear flow exists, as shown in
Appendix A, whenever most of the fluid entering the
wellbore comes from the formation and fracture tip
effects have not yet affected the well behavior.
Let us now examine this behavior in a log-log
graph of p,p vs. tp,, (Fig. 2). In Case 1
[(ksby) p=0. 1 the bilinear flow exists between
Pomts B and C after a transition flow period
represented by Segment A-B. The pressure behavior
for the bilinear flow exhibits a straight line whose
slope is equal to one fourth. The duration of this
period depends on both (kfb ) p and Cfo Case 2
[(ksbs) p = 500] may or may not exhibit the bilinear
flow period, as shown by the upper and lower curves.
The upper curve for Case 2 corresponds to a low
value for Cypr and does exhibit bilinear flow over a
short period of time (Segment G-H); however, the
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Fig. 5- Dimensionless time for the end of the bilinear flow
period vs. dimensionless fracture conductivity.

lower curve corresponding to a high value of C v
does not exhibit the bilinear flow behavior because
fracture tip effects are felt before this flow regime is
established (Segment L-I).

The dimensionless wellbore pressure for the
bilinear flow period is given by*

%
Puo= 15 2(k,b,),;, Phrs wovennne. (12)
or
245,
p_wD—mth ................ (13)

ThlS equation indicates that a graph of Pwp VS.

th produces a straight line whose slope is
2. 45/\/(kfb )p , intercepting the origin. Fig. 4
presents that type of graph for different values of
(k rbf) p-

An important feature of this graph is that after the
bilinear flow period (straight-line portion), the curves
for (ksby) Dsl 6 are concave downward and the
curves for (ksbr) p > 1.6 are concave upward.

The end of the straight-line portion of the curves
depends on the fracture conductivity and may be
expressed by

0.1
Dby = for (ksb;) p=3,
e = b % (kbs) p

*See Appendix A for derivation.
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Fig. 6—Graph for analysis of pressure data of bilinear
flow.

—-1.53
tpeby =0.0205( (k) p— 1.5

forl.6=< (kfbf)D <3 ...l (14b)
and
4.55 -4
tDeps = —-2.5
f [V(kfb,) D ]
for (kb ) p=<1.6. .............. (14c)

Fig. 5 shows a graphical rebrmentation of these
equations.

Bilinear Flow Analysis

Bilinear flow is exhibited by finite-conductivity
fractures with a small dimensionless storage capacity,
Cypy- Any attempt to analyze pressure data observed
over this flow period using conventional methods (p
vs. VI or p vs. log ) will produce erroneous results.
We present the appropriate analysis method based on
the bilinear flow theory.

Basic Equations and Graphs

From Eq. 13, the pressure drop for oil may be ex-
pressed as

= h(ksby) % (i k) Ve, .ol (15)
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Flg. 7 - Log-log graph of pressure data for bilinear flow.

and, for gas,

. _ é bfgq T

Am(p) h(5)  (opeyi) Ve, ...l (16)
where Ap is the pressure (pseudopressure) change for
a given test. Both 4,,, and 4, are unit conversion
constants and are given in Table 1. ,

Eqgs. 15 and 16 indicate that the pressure change is
both inversely proportional to the square root of the
fracture conductivity and directly proportional to the
fourth root of time.

According to Egs. 15 and 16, a graph of Ap vs. Vr
produces a straight line passing through the origin,
whose slope, m,, for oil, is given by

BbeQBu
my= A § |
Y hiksby) " (Suc k) ™ an
and, for gas,
opad? (18)

Mysr= 1 ’
¥ hikgbs) ¥ (duc,k) 7
Hence, the product h(kfb ) “ can be estimated by
using the following equations. For oil,

. . 8pr,9Bup
hkbp)t=—"00TF L. 19
and, for gas,
' 5
hkby = —20dT 0)

mpp(Spc k) *

1753



AP

AP,

° T

Fig. 8 - Bilinear-flow graph for a fracture with a flow
restriction near the welibors.

These equations indicate that values of reservoir
propertie]s must be available to estimate the group
h(ksby) “2 | Note that this analysis technique tends to

decrease the effect of the error introduced when poor -

information on reservoir properties (i.e., X, ¢, and
¢,) is used.

All comments on the concavity of the curve in Fig.
4 are valid for the curve in Fig. 6.

From Egs. 13 and 14, if (ksbs)p=3, the
dimensionless pressure drop at the end of the bilinear
flow period is given by

1.38
(PwD) ebf = e e 1)
wD /) ebf (kfbf)D

Hence, the dimensionless fracture conductivity can
be estimated using the following equation.

1.38

Pwp) evy
(Pwp) epy can be calculated using Eq. 1 or Eq. 2 and
(AP) epr Or Am(p) pp obtained from the bilinear
flow graph.
From Eqs. 15 and 16, a graph of log Ap vs. log ¢
yields a quarter-slope straight line (Fig. 7) that can be
‘used as a diagnostic tool for bilinear flow detection.

(kfbf)D= ................. (22)

Extensions and Limitations

The region disturbed during bilinear flow includes
only the fracture and its vicinities because it occurs at
early time, even in partially penetrating fracture
systems. Thus, the equations and graphs discussed in
the previous section for bilinear flow can be extended
to cases where the fracture does not penetrate the

1754

AP

PRESSURE BEHAVIOR WITH WELLBORE
STORAGE EFFECTS

ﬁ.

Fig. 9—Waellbore storage effect on the bilinear flow graph.

entire thickness of the formation. This is possible
simply by using the fracture height, A £y instead of the
formation thickness, A.

In cases where a flow restriction (low conductivity,
turbulent flow) exists within the fracture in the
vicinity of the wellbore, bilinear flow still occurs and
the pressure data analysis discussed can be applied
(see Fig. 8). An extra pressure drop, Ap, is created in
this case and the straight-line portion does not in-
tercept the origin. These situations distort the
straight-line portion in the log-log graph.

If wellbore storage affects the system, the bilinear
flow pressure behavior may be masked, as shown in
Fig. 9, and data analysis becomes difficult (if not
impossible) with current interpretation methods.

Flow Regime Identification
and New Type Curves

The pressure behavior of a fractured well may exhibit
several flow periods for practical values of time:
bilinear flow, formation linear flow, and
pseudoradial flow.

Pressure data for each flow period should be
analyzed using a specific interpretation method (i.e.,
Dy vs. V&, p,, vs. V1, and p,, vs. log ¢ for bilinear,
linear, and pseudoradial flows, respectively).

The log-log graph has been used commonly as a
diagnostic tool to detect different flow regimes in a
transient pressure test. The use of type curves in the
analysis of pressure data for fractured wells
represents a major step in that area. The first type
curves for fractured wells were Zgresented by
Gringarten et. al.!? Cinco-Ley et al. showed that
the infinite-conductivity vertical fracture solution of
Gringarten and Ramey!” behaves like the solution
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for a finite-conductivity vertical fracture of
(kfb ) p =300; furthermore, they showed that the
umform-flux vertical fracture behaves as a variable-
conductivity vertical fracture. The type-curve
analysis offers an advantage over the specific analysis
methods already mentioned because it can be applied
to interpret at once pressure test data that correspond
to different flow periods. In addition, the type-curve
analysis could indicate when the different graphical
techniques apply.

Experience has shown that, in some cases, ap-
plication of the type curves available for finite-
conductivity vertical fractures does not yield unique
results. This is because the shape of pressure
behavior curves is similar for different values of
dimensionless fracture conductivity over some
regions of the type curves. A close inspection of Fig.
2 indicates that the uniqueness problem can exist if
pressure data to be analyzed occur at either the
bilinear flow period (one-fourth slope) or the
pseudoradial flow period.

A convenient presentatlon of the type curve
published by Cmco-Ley etal.,? Ramey et al., 31 and
Agarwal et al. 29 is given in Fxg 10. We show a graph
of log [p,,p(ksbs) p] vs. log [tpy, (keb )D] The
mam feature of this graph is thatf for all values of

p the behavior of both bilinear flow (quarter
slope{ and the formation linear flow (half slope) is
given by a single curve. Note that there is a transition
period between the bilinear and linear flows. The
dashed line in this figure indicates the approximate
start of the pseudoradial flow period (semilog
straight line). Also shown are the end of the bilinear
flow and the start of the formation linear flow; the
time for the end of the bilinear flow from Fig. 10
agrees with the results presented in Fig. 5. The groups
of variables used in Fig. 10 were derived in Appendix
B, where it is shown that, for some values of fracture
conductivity, bilinear flow ends when fracture tip
effects are felt at the wellbore,

Although many curves are presented for
(k b ) p > 207, the shape of these lines is essentially
the same The only difference is the duration of the
formation linear flow (half slope); that is, the higher
the fracture conductivity, the longer the linear flow
period.

The begmmng of the formation linear flow occurs

at thf(kfbf) D= that 18,
100
LB S — 5 . et (23)
Do ko)
The end of this flow period is given by!?
Ipeyr=0.016. ... ... ...l (24)

Hence, the fracture conductivity may be estimated as
follows:

10
(krbs) p = )
r°r’D :ZtDblf

*A large-scale copy of this graph may be obtained from the authors.
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APPROXINATE START
OF SEMILOG STRAIGHT
LINE

b )
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Fig. 10— Type curve for vertically fractured welis.

or

(kpbg) p=125%10"2 2L
Loiy

These equations apply when (& 7b 7) p =100.
Fig. 10 can be used as a type curve to analyze
pressure data for a fractured well. Pressure dataon a
graph of log Ap vs. log ¢ is matched on a type curve to

determme @P) a1, [Pwp (kpbp) plass (D aps [ty

(ko) Dlags [kgby) plags” (o) s (Ppig) pg A
(2pss1) pr- From this information, we can estimate the
following.

Dimensionless Fracture Conductivity.

[ ksb7) p) e
Formation Permeability. For oil,
a,qBu wwD ' (kfbf)D]M

°T R Lksbp) plag
and, for gas,

a,qT

_ Pwp - (ksbs) plm
§ hlam(p)]y

[(kbr) plas

Fracture Half-Length.

[(kebp)plae |4
rewerrss sl IRRLC

Fracture Conductivity.
End of Bilinear Flow.

_[ setrn
Puc,

(tenf) M

Beginning of Formation Linear Flow.

(toif) M
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flow conditions.
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Fig. 12-Type-curve matching for data in bilinear and
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Beginning of Semilog Straight Line.

(tosst) M

These results can be obtained if a large span of
pressure data is available. It should be kept in mind
that specific analysis graphs must be used for dif-
ferent flow regimes to obtain a better estimate of
both fracture and reservoir parameters.

Now we discuss cases where all pressure data fail
on a very small portion of the type curve and a
complete set of information may not be obtained.

Case 1. Pressure data exhibit one-fourth slope on a
log-log graph (Fig. 7). According to the discussion
in the previous section, these data correspond to the
bilinear flow period and a unique match with Fig. 10
cannot be attained. The bilinear flow type of analysis
is the only method available for this case to obtain
information regarding the fracture characteristics
(kgby).

A minimum value for fracture half-length, x,, can
be estimated from Eqgs. 14a through l4c for the end
of the bilinear flow; that is, for (ksbs)p 23, we
have

N L

duck

Generally, wellbore storage affects a test at early
time; thus, it is expected to have pressure data
distorted by this effect, causing deviation from the
one-fourth slope characteristic of this flow period.
Fig. 11 may be applied to analyze pressure data for
this case even if the duration of the test is not enough
to reach the one-fourth slope portion. It is important
to note that pressure behavior in Fig. 11 for both
wellbore-storage-dominated and Dbilinear-flow
portions is given by a single curve that completely
eliminates the uniqueness matching problem. The
correlating parameters £y (p,,p) and F, (fp, f) used
in this figure are derived in Appendix C and-defined
in Fig. 11.

The end of wellbore storage effects in Fig. 11
occurs when F, (fp, ¢ ) =2x104; that yields

_17.253 c*
ews — ) (kfbf)2h4¢oc,k'

From observation of the results presented in Fig. 11,
we can see that the end of wellbore storage effects
occurs three log cycles after the end of the unit slope.

This criterion is useful to determine whether the
proper straight-line portion for bilinear flow analysis
is chosen (see Fig. 9). If Fig. 11 is used as a type
curve, the following information may be obtained:
(F1@wp)lms [Faltpx)me (AP)pg, and (2) p
Hence, we can estimate the following.

Wellbore Storage Constant. For oil,

C= 27, BgBu(t) pr [Fy (Pwp) M
A9y [Falipe)Iu
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and, for gas, and, for gas,
keb a,qT
_ 27, BqT () y [Fy (Pwp)lm o (34) ( )fc f>= h[Aann)] [wa(kfbf)D]M -(38)
[Amp)lp [Falpxp)Im 4 M
- . Fracture half-length and fracture conductivity. For
Fracture Conductivity. For oil, oil or gas,
kb= 0.4 C {aqu”'{Fl (wa)]M}3
T W N geik (4p) pr ’ x;= (kfbf> B(Om . (39)
................... 35) o klt by (kybp) Dl
? f y
and, for gas and
kebr= g Lz k
T q&c,k{ [Am (p) ] pr } kbp=Gep) (<EL) L (40)
........................ (36)

Case 2. Pressure data partially match the curve for
the transition period between bilinear and linear
flows (Fig. 12). In this case, the remaining portion
of the data may correspond to bilinear or linear flow
and the type-curve match is unique because the
transition period has a characteristic shape. This
comment is valid for dimensionless fracture con-
ductivities, (ksbs) p =5

From the type-curve match of pressure data for
this case in Fxg 10, we obtain [p,,p (ksbs) plass
[thf (ksbs) Dlps (A1) pg, and (Ap) py.
Hence, for oil,

(kfbf)= QOQB]L
Xr h(ap) pm
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[wa (ksby) D}M .(37)

Since the formation permeability generally is
known from prefracture tests, the dimensionless
fracture conductivity can be estimated by using
results from Eq. 37 or Eq. 38. Some of these resuits
also can be obtained from a specific analysis method
corresponding to the flow period exhibited by data
other than the transition flow region (i.e., bilinear
flow or linear formation flow, as discussed in the
bilinear flow analysis section and in Ref. 14).

If all pressure data fall on the transition period of
the curve, type-curve matching (Fig. 10) is the only
analysis method available.

Case 3. Pressure data exhibit a half-slope line on a
log-log graph. (Fig. 13). For this case there is no
unique match with Fig. 10; however, the linear flow
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Fig. 15~Type curve for a finite-conductivity vertical
fracture.

analysis presented by Clark!4 can be applied to
obtain fracture half-length if formation permeability
is known. In addition, a minimum value for the
dimensionless fracture conductivity, (kfbf) Dp» can
be estimated using Eq. 26. Note that tpy in Fig. 13
represents a maximum value for the time of the
beginning of the linear flow period and ¢, represents
a minimum value for the time of the end of the half
slope.

If wellbore storage effects are present at early
times in a test for this case, the analysis can be made
using the tYpe curve presented by Ramey and
Gringarten.?

Case 4. Pressure data partially match the curve for
the pseudoradial flow period. If a large span of

different values of fracture conductivity are similarly
shaped for the pseudoradial flow period. However,
the transient pressure behavior shown in Fig. 10 can
be correlated to analyze these cases better.

For the pseudoradial flow period, a fractured well
behaves like an unfractured well with an effective
wellbore radius being a function of dimensionless
fracture conductivity, (ksby) p. Fig. 14 presents a
graph of dimensionless ef{ective wellbore radius,
r,’,,/xf, vs. dimensionless fracture conductivity,
(kfbr) p.  Notice that for large values of
(k bf) p(>300), the dimensionless effective
wellbore radius is 0.5, as mentioned by Prats er a/. 8

If the dimensionless time is defined by using r;,
instead of Xy, a graph of p,,p vs. tD,;. provides a
single curve for the pseudoradial flow period for all
values of dimensionless fracture conductivity (see
Fig. 15). This curve provides an excellent tool for
type-curve analysis of pressure data partially falling
in the pseudoradial flow period because the
remaining data must follow one of the curves for
different fracture conductivities. Fig. 14 must be
used as an auxiliary curve to determine (kfbf) D
when using Fig. 15.

Application of Fig. 15 to match pressure data
provides (Pup) s (tpr, ) pps (8P) pp (1) p, and
[gkfbf) play- Hence, the following equations are
given.

Reservoir Permeability. For oil,

pressure data is not available, a unique match would - @,qBu Pup) @1)
not be obtained by using Fig. 10 because curves for h(Ap) p wD’M:
102 g I
Match Point
- - . ) 2 st = 1 hour k., b > .
o [;m(p)]nzxof% (2], Y tkgbgdp 2 5 ““bf’D
x tepg ©0-35 hour
"o = 6. tae | XD f2 ] = 3,69 x 1077 20
o7 [PuptePeipmd = €5 [tax ! XePlf | X tepg * 25 hour 0 ‘o
5e
2
- - —— - - '
.
l/-5
4o

At [hours)

Fig. 16 - Type-curve matching for Well A.
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and, for gas,

k= aqu

) Y 2N 42
Ham Va2 M )
Effective Wellbore Radius. For oil or gas,
k(¢
w —g—(lﬁﬂ—. ................. 43)
ouc (tp, W M

By using [(kfbf)D]M in Fig. 14, we obtain

(ry/xr) ig. 145 hence,

Ty
Xpm (@4)
T ri/xgEig 14

The pressure data falling in the pseudoradial flow
period also must be analyzed using the semilog
methods to estimate k and r;,

The discussion in this secnon clearly indicates (as
mentioned by Agarwal er al.?®) that caution and
diligence should be exercised when applying the type-
curve matching technique. To perform the type of
analysis presented in the four cases, it is necessary to
have prefracture information.

It should be kept in mind that application of the
type-curve analysis method to pressure buildup tests
is appropriate when the producing time is large.

Examples of Application

Three examples illustrate the application of several of
the methods and theory previously discussed.

Well A

A buildup test was conducted in this fractured well
producing in a low-permeability reservoir. Table 2
presents the information and results of the analysis
for this test. Fig. 16 shows a log-log graph of pressure
data matching the type curve given in Fig. 10. Notice
that the first data points are influenced by wellbore
storage and the rest of the data fall in both the
bilinear and the transition flow periods. The match-
pomt results also are presented in Fig. 16. A
minimum value for (k¢bs) p can be estimated from
the position of the last data point with respect to the
type curves; for this case, (k;bs) p min =5x.

The end of wellbore storage occurs at ap-
proximately 0.35 hour and the end of bilinear flow is
at 2.5 hours. We also see that the formation linear
flow period was not reached in this test.

Since the test was not long enough to match a
curve for a specific value of (k/by) p, this example
corresponds to Case 2 in the type-curve—analysxs
section.

Using the pressure data match and Eq. 38, we
obtain

kebr 1,424 % 7,350 X 690 X 6.5
xp 118x 10

=0.3978 md-ft/ft.
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TABLE 2~ TEST INFORMATION AND ANALYSIS RESULTS

FORWELLA
Reservoir Data
Production rate q, Mscf/D 7,350
Producing time t,, hours 2,640
Formation thickness h, ft 118
Porosity ¢, fraction 0.1
Permeability k, md 0.025
Formation temperature T, °R 690
Average gas viscosity u, cp 0.0252
Total compressibility ¢,, psi~" 0.129x 10~3
Flowing weilbore pressure p,s, psia 1,320
Analysis Resuits Type-Curve Bilinear
Analysis  Flow Analysis
k¢ by, md-ft 148 154
Xy, ft 373 368
keb
( —;—') md-ftft 0.3978 0.4185
t
(ko) 15.9 ~16.71
ry, ft 1716 ~169.3

From the time-match information and Eq. 39, we can
calculate

x;=0.3978

J 2.637x 1074 x1
0.1x0.025%1.29%x10~% x0.025x 3.69%x 102

=373 ft.

Now, application of Eq. 40 yields

k by =0.3978 x 373 = 148 md-ft.

We also can estimate
kebr 1
kb = 2f7f
( f f)D xf k
_ 0.3978 =15.9
T 0025

From Fig. 14, r}, /x;=0.46.
Y Py =373x0.46=171.6 ft.

Flg 17 shows the bilinear flow graph [Am(p) vs.

At*] for this example. Based on the information
provided by Fig. 16, the correct straxght hne is
drawn The slope of this line is 1.62x 108 psiZ/cp-
hr”, and at the end of bilinear flow
Am(p) ebf =2.05x 108 ps12/cp-hr . Notice that the
pressure curve after the end of the bilinear flow
period is concave upward, indicating that
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amip) | 10® psiZ/cp)
T

(] End of 3ilinear Plow

Wallbore Storage
2 : ) ;
0 ) 2 3 4

(84" rour

Fig. 17 - Bilinear flow graph for Well A.

TABLE 3 - TEST INFORMATION AND ANALYSIS RESULTS
FORWELLB

Reservoir Data

Production rate q, Mscf/D 1,675
Producing time t,,, hours 1,800
Formation thickness A, ft 85
Porosity ¢, fraction 0.11
Permeability k, md 0.0045
Formation temperature T, °R 875
Average gas viscosity u, Cp 0.025
Total compressibility ¢;, psi~" 0.152x 103
Flowing weilbore pressure p,, psia 1,250
Analysis Resuits Type-Curve Bilinear
Analysis  Flow Analysis
ksby, md-ft - 95.3
Xy, ft - =692
(20, ma-tut - <0.1377
X¢
(k fb!) ) - <306
ry, it . - <325
From Eq. 20,

(ksbys) " =(444.75 x 7,350 X 690)/{1.62 x 108 x 118

-(0.1x0.0252x 1.29x 10 =4 x 0.025)} 4,
. (kgbr) =154 md-ft.
Using Eqs. 22 and 2,

1.38
(ksbys) o=
o D= O X 118 % 2.05 X 108
1,424 %X 7,350 X 690 )
~16.71.
1760

10°
=
24
o~
2 M,‘/
8
5
€ AN
a /‘ Siope= 4
107 5
10" 107! 1 0! 102

At thoursi

Fig. 18— Log-iog graph of pressure data for Well B.

Hence,

krbs
k(ksbs) p

_ 154
T 0.025x16.71

sz

=368 ft.

From Fig. 14, r/, /x;=0.46.
<Thy =368 X 0.46 = 169.3 ft.

We see that the results obtained by using both the
bilinear flow and the type-curve methods are ap-
proximately the same; this fact increases confidence
in the analysis performed.

Well B

A buildup test was run after fracturing this gas well.
Information about the test and results of analysis are
presented in Table 3. A log-log graph of pressure
data (Fig. 18) indicates that the test was completely
dominated by bilinear flow (quarter slope),
corresponding this example to Case 1 in the type-
curve-analysis section. .

The bilinear flow graph (Fig. 19) yields a straight
line whose slope, mys, can be used to calculate
(ksby) using Eq. 20:

(kgbs) ¥ = (444.75 X 1,675 x 675) [[0.92 % 108
X 85x(0.11x0.025x1.52x 104
x0.0045)'/‘],
or
kfbf=95'3 md-ft.

If we assume that the last data point corresponds to
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(At)las: = 18 nours

1k mye = 0.92 x 108 _R8A%
cp e

am(p) [ 108psi¥/cp)

A 1 1 X L

1 2 3
7 1
{At) 4{hour /4)

Fig. 19— Bilinear flow graph for Well B.

the end of the bilinear flow period and (k/bs) p =3,

then from Eq. 31,
. i/ 10%2.637x 10~ x (95.3)2 x 18
= N 0.11%0.025x 1.52 X 10-* x 0.0045

=692 ft,

and

95.3
krbr <333 01377 ma-f/te.
692

Xf
Frdm Eq. 6,
kb 95.3
= (%
(kb o= kx s ) = G0 <o

. (kfbf) D =30.6.

From Fig. 14, r;v/xf50.47; hence, r;, <0.47x692,
ry, <325 ft.

Well C

After a flowing time of 1,890 hours, a buildup test
was run on this fractured oil well. Information for
the test and analysis results are presented in Table 4.
Fig. 20 shows a log-log graph of the pressure data;
from this graph we can see that neither a one-fourth
slope nor a haif slope is exhibited by the data. This

figure also shows that pressure data match the curve .

for (kfb ) p =2 given in Fig. 15 and the last six
points fal{ on the semilog straight line.

From the pressure match obtained in Fig. 20 and
Eq. 41, we estimate

_ 141.2x220x1.2x0.8x0.34
49 x 100

k

=2.07md.
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ol . . ; . :
Beginning of Semileg
Straight Line

Match point

(ap1, = 100 psi

Puplu = 0.34
(nt)M = 1 hr

(tg.i)y = 0.19
Dry’n |

Fig. 20 - Type-curve matching for Well C.

TABLE 4 —- TEST INFORMATION AND ANALYSIS RESULTS

FORWELLC

Reservoir Data
Production rate q, STB/D 220
Producing time t,,, hours 1,890
Formation thickness h, ft 49
Porosity ¢, fraction 0.15
Viscosity u, cp 0.8
Total compressibility ¢,, psi~" 17.6x10-8
Formation volume factor 8,, bbi/STB 1.2
Welibore radius r,,, ft 0.256
Flowing wellbore pressure p,, psia 1,704

Analysis Results Type-Curve Semilog

Analysis Analysis

k, md 207 2.28

(ktbe)p 2x -

Xy, ft 88.7 -

kybf, md-ft 1,156 -

o, ft 36.89 30.37

S -4.99 —-48

Using information from the time match in Eq. 43,

,_J 2.637x10~4x2.07x 1
YV 0.15%0.8%x17.6x10°6%0.19

=36.9 ft.
From Fig. 14, r}, /x;=0.415; hence,
Xp= 36.9 =88.9f
/= 0a1s o7
The skin factor is estimated by
r 0.25
s=In-¥ =ln—= = —-4.99,
r, 36.9 %
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Fig. 21 — Semilog graph for Weli C.

The fracture conductivity is
=27 x2.07 % 88.9=1,156.2 md-ft.

Fig. 21 is a semilog graph for this example. The
correct semilog straight line has a slope m =307

psi/cycle and (Ap)y, = —47 psi. The formation

permeability can be calculated as
162.6 gB
Pl id o
mh

_ 162.6x220x 1.2% 0.8
- 307 x 49
The skin factor is

s= 1.151[9.%1_111 -mg(d,—#ck;-7 ) +3.2275]
t'w

=2.28 md.

—47
= 1.151[-3-6-7—

2.28
0.15%0.8x 17.6 X 10~ % x (0.25)?

—log

+3.2275] = _428.

Finally, the effective wellbore radius is

rl,=r,e$=025¢*8
=30.37 ft.

The results provided by both the type-curve
analysis and semilog analysis methods are in good
agreement. From these examples it is demonstrated
that type-curve analysis, when applied properly,
provides an excellent diagnostic tool and a technique
to estimate both reservoir and fracture parameters.
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Conclusions

Based on the material presented in this work, the
following remarks are pertinent.

1. The transient flow behavior of a vertically
fractured well may exhibit four flow periods: (a)
fracture linear flow, (b) bilinear flow, (¢) formation
linear flow, and (d) pseudoradial flow. Bilinear flow
is a new type of flow that has not been considered

before.
2. A new technique is presented to analyze data in

the bilinear flow period. It is shown that, during this
flow period, a graph of p,,dor m(p,,)] vs. V¢ yields
a straight line whose slope is inversely proportional

3. New type curves are now available for pressure
analysis of fractured wells. The uniqueness problem
in the analysis is reduced considerably with the use of
these type curves.

4. Prefracture information about the reservoir is
necessary to estimate fracture parameters.

5. The type-curve analysis method must be used
simultaneously with the specific analysis methods
(D Vs. {1, Dy VS. Ve, and p ¢ vs. log ¢) to produce
reliable results.
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Nomenclature

by = fracture width
B = formation volume factor
¢ = compressibility
C = wellbore storage coefficient
Fy, F, = correlating parameters for wellbore
storage
h = formation thickness

hy = fracture height
k = permeability

ksbs = fracture conductivity

(ksbs) p = dimensionless fracture conductivity
m = slope of semilog straight line, gas
pseudopressure

myr = slope of straight line for bilinear flow
p = pressure
g = well flow rate

i

r, = wellbore radius

ry, = effective wellbore radius
s = skin factor or Laplace space variable
t = time
At = shut-in time
T = reservoir temperature
X,y = space coordinates
xy = fracture half-length
a,f = unit conversion constants
I' = gamma function
n = hydraulic diffusivity
¢ = porosity
u = fluid viscosity
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Subscripts
b = beginning
bf = bilinear flow
g = gas
D = dimensionless
e = end
= fracture, flowing
i = initial
If = linear flow
o = oil
t = total
Xp = based on Xf
w = wellbore
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APPENDIX A

Short-Time Transient Pressure
Behavior for a Well With

a Finite-Conductivity Fracture
Derivation of Solution

Let us consider the system described in the text of this
paper. A fractured well produces at a constant flow
rate from an infinite reservoir. At small time values,
the pressure behavior of the system is not affected by
the tips of the fracture. In addition, the flow in the
formation is essentially linear and perpendicular to
the fracture plane. The reservoir and the fracture
may be treated as two different homogeneous
regions.?

If the flow within the fracture is assumed to be
linear, the pressure behavior can be described by

#p/p 2 arp
aXDZ (kfbf)D ayD yo=0
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-1 %m
1D Opy,
forO<xD<oo, thf>0.

Initial Condition.
P =0, thf=O’ 0$XD<W.
Boundary Conditions.

o, ___* _

= - s IDx >0,
aXD xp=0 (kfbf)D s

and

lim pp=0, !Dx, >0,

Xp—o
where, in oilfield units,

kh(p;i—psl
=P TR
PP= 41248’

_ khip;-p)

PD= "1 24Bu
- 0.000264 kt
DXI— ¢‘“:'xf s

X
Xp = X_f N

and

Yp= X

Xf

The variables not included above are defined in the
text. p and p, represent the formation pressure and
the fracture pressure, respectively, x is the flow
direction in the fracture, and y is the formation flow
direction perpendicular to the fracture plane. v

The transient flow in the formation may be
described by

Initial Condition.
pp=0;0<yp <o thf=0. ............ (A-6)
Boundary Conditions.
PD\y,=0=PDj tpx, >0,
and

lim pp=0; thf>0‘. ................ (A-8)
Yp—*®
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The two partial differential equations are already
coupled by the boundary conditions. Application of
the Laplace transformation with respect to time to
Eqgs. A-1 through A-8 and simplification yields

#pp 2 dpp
8xDZ (kfbf)D ayD Ya=0
=2 P 0<xp<oo (A-9)
"ID D3 D « essscesces
Boundary Conditions.
ap x
Mo = .. (A-10)
xp 0o  (kebp)p
im pp=0, ...........Lll, (A-11)
Xp=—x
and
#?p )
Ty—g— =5pp; 0<yp<o. ... ... (A-12)
D
Boundary Conditions.
Pp yp=0 "ij, .................... (A-l3)
im pp=0, ..., (A-14)
Yp—®
where

p.m (xD.v S) = £thf [ij (xD’tDXf) ]’
and
PpUp. ) =Ly, [PpDs px) 1-

Now let us define

Pp(r.8) =£, [Ppp.s) ]
Application of the Laplace transformation, with
respect to yp, to Eq. A-12 yields
3Ppp
Wp lyp=0

By solving for pp and considering Eq. A-13, we
obtain

r*Pp=rPp|y,=0- =sPp. ..(A-15)

The inversion of this equation with respect to yp,
yields

B B ap
Pp=Pmp cosh(\/EyD) + —pq—
p yp=0
sinhA (Vs yp)
Vs )
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From Eqgs. A-14 and A-17, we can write
pp
p yp=0
Next, substitution of Eq. A-18 into Eq. A-9 allows
us to write a partial differential equation with only
one dependent variable:
#bp s L2 5
axD. "ﬂ) (kfbf)D /D:
The solution of Eq. A-19 with boundary conditions
given by Egs. A-10 and A-11 can be expressed as

s 7
re*p{—xo[:lj—p—-’-———(kfbj)o] }

s Vs %A
kb S AL
(krbs) p S[WD (kfb,f)D]

= —’E/Dy/:g__

Pp=

The pressure at the wellbore p,,, is calculated at
xp =0; thus,

- x
Pwp= sV A2

[E— +————_—
1 (kebs)p

Finally, the Laplace inversion of Eq. A-21 with
respect to { p,. o produces

e S""f

NN ]
(krbp) p (tpy, =N "
VA

erfc[

Unfortunately, Eq. A-22 is too complex to analyze
both the short- and long-time behavior of the
solution. Eq. A-21 may be used for this purpose.

Short-Time Behavior

The short-time -approximation of the solution can be
obtained from Eq. A-21 by taking the limit as the
variable s approaches infinity. Thus,

- ™Y
Pwp = —-—&577
(k fb f) DS
Inversion of this formula produces Eq. 8.

Long-Time Behavior

We can obtain the solution for large values of time by
taking the limit of Eq. A-21 as s approaches zero;
hence,

- x
Pwp= ;z(kfbf)Ds )
Inverting Eq. A-24 produces Eq. 12. This solution

also may be obtained by considering incompressible
flow within the fracture.
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Total Formation Flow

Eqgs. A-18 and A-20 can be used to calculate the
fraction of the well flow rate that is being produced
from the formation. The formula for this case ap-
pears to be :

=1—-exp(:2‘1;_l;§;2'>

-erfc( ﬂ) ......... (A-25)

*Cror

For small values of !Dx,» the amount of fluid
coming from the formation 1s negligible; however, at
large values of ¢p, , most of the produced fluid
comes from the ff)rmation. This illustrates the
physical behavior of the system.

Ztormation

APPENDIX B
Derivation of Correlation Parameters
for Bilinear and Linear Flows

If we consider a fracture of length xs, Eq. A4
becomes :

m|

e ettt ctctc e, (B-1)
axD xp=1

Using Eq. B-1 instead of Eq. A-4 and considering
incompressible flow within the fracture, the Laplace
transformation solution for the problem stated in
Appendix A is’

Lo
Py, ={ —x+ 21re.xp£—2n
n=0

[ZJ_Uc_b“zf_] %K / (s("fbf’u

70f) b
2 —sf]yz et (B-2)
(kfbf)p
or
[
By (ko) g ={ —x+ ] 27 exp{ —2n
n=
'[2 S ]/zz s
(krbs) p (krbs) p
J’s_ %
2] ) e (B-3)
[ (kebg) p ]
Hence,
1 s
5y (Ksbg) p= . ..(B-4)
Ly wyd
From Laplace inversion tables,
Puy (kbe) p=Fltpy - (kebg) pP1. ...... (B-6)
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Hence, a graph of p,, (ksbs) p vs. ! Dx, (kfbf)2
yields a single curve.

For small values of dimensionless time, Eq. B-3
yields Eq. A-24, corresponding to bilinear flow.

The long-time approximation of Eq. B-3 yields

- x .
wa = m 3 e e s e et e ecos e e (B-7)

which is the Laplace transform of the dimensionless
pressure for the formation linear flow.

APPENDIX C

Derivation of Correlation Parameters
for Bilinear Flow with

Wellbore Storage Effects

When wellbore storage effects are considered in the
flow problem defined in Appendix A, the boundary
condition at x, =0 becomes

ap T ap
=/m =——" (1—Cp,—=¥D (C-1)
D [
axD xp=0 (kfbf)D( fathf)
where
C

Cpr=s———3,
D™ 2xgchxy

and C'is the wellbore storage coefficient.

If flow within the fracture is considered in-
compressible and Eq. C-1 is taken instead of Eq. A-
3, the solution for the wellbore pressure in the
Laplace space is given by

T

Pwb= ko) p &F +7Cppst’

which can be written as
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(kby) 3 cpids P
_L‘%pr0=7f/{‘/§[ 2/3
cp3s
w1 .. (c9

T
(kfbf) D2/3

From properties of the Laplace transformation,

L~ f(as) = lf‘[é] .................. (C-5)

a
Hence, Eq. C-4 can be written as

(ksb )D2/3 _ (ksb )DZ/3
(CDf) 173 wa_F[ (CDf)I/§ thf]'

This means that the bilinear flow solutions including
wellbore storage are represented by a single curve
when graphed in terms of

(kb)2/3 (kb)2/3
—éii%_‘l’wu vs. ~LLB e
Df (Cpr)
SI Metric Conversion Factors
cp X 1.0* E-03 = Pa-s
ft x 3.048* E-01l =m
psi X 6.894 757 E+00 = kPa

JPT

*Conversion factor is exact.
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