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The analytical solution is presented to the 
problem of flow of a slightly compressible fluid 
in a limited, composite reservoir with radial 
symmetry which is produced by a well at the 
center. Numerical results are given for a specific 
case. It is believed that this type of heterogeneity 
can account for some actually observed pressure 
behavior and should be of special value in the 
interpretation of reservoir limit tests. 

The system of interest is composed of two zones 
of different permeability in concentric series. There 
is no flow across the outer boundary of the outer 
zone, and fluid is withdrawn from the system at 
a well represented by a point sink located at the 
center of the inner zone. The solution to this 
problem is useful in the fundamental study of 
the behavior of reservoirs having a low permea
bility "rim" and in the pressure transient behavior 
of some wells having a large horizontal fracture 
or a large fractured area such as would be created 
by a nuclear explosion. The analytical solution 
to this particular problem has apparently not 
been previously published. 

This paper contains (1) a mathematical state
ment of the problem, (2) the analytical solution, 
(3) numerical results for a specific problem, and 
(4) discussion of the physical interpretation of 
these results. The Appendix contains descriptions 
of the procedures used to obtain the analytical 
solution and the tabulated results for a specific 
problem. The specific numerical results given show 
that reservoir fluid from a very low permeability 
rim can contribute to production from a well located 
in the high permeability area,' Predicted pressure 
drawdown and build-up behavior for the system is 
given. 

INTRODUCTION 

The present work was undertaken to develop a 
basis for interpretation of some observed well 
pressure transient behavior that did not appear to 

be otherwise explainable. The solution described 
herein has special significance in the interpretation 
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of well pressure transient tests designed to 
indicate reservoir limits. 

The partial differential equations describing 
transient heat conduction and the transient flow 
of fluids having small and constant compressibility 
in porous media are mathematically identical. 
Analytical solutions to this equation for systems 
involving media of different conductivities in 
concen tric series have appeared in connection 
with both types of problems. In the heat conduction 
literature, solutions have been published by 
Jaeger 1 and Cars law and Jaeger.2 In reservoir 
engineering literature, solutions have been pub
lished by Hazebroek, Matthews and Rainbow, 3 

Hurst 4 and Loucks and Guerrero.S Additional 
published solutions are cited in Ref. 2. In all 
of these references the Laplace transform method 
equivalent to that introduced to the petroleum 
literature by van Everdingen and Hurst 10 has 
been utilized to obtain solutions. This method 
was also employed in the present work. 

Although radial symmetry is specifically assumed 
in this treatment, Lhe numerical results should 
give some qualitative insight into the behavior 
of many reservoirs having a roughly circular area 
of commercial pay surrounded by a hydrocarbon
containing region in which wells would be non
commercial because of low permeability. 

Hopkinson et aL8 gave an expression for the 
linear asymptote portion of the solution for the 
linear zone which is equivalent to the one given 
in this paper. Ref. 8 considers a ratio of diffusiviries 
between the two zones which may be independent 
of the ratio of permeabilities. In this paper, a 
difference in permeabilities only is considered 
and the ratio of the hydraulic diffusivities in the 
two zones is equal to the ratio of the permeabilities. 

STATEMENT OF THE PROBLEM 

The problem for which a solution is wanted IS 

defined by the following equations. A diagram of 
the reservoir system is shown in Fig. 1: 

..!.. i) (r lA..e. 1) : 
r dr dr 

...... (Ia) 

lReferenc es given at end of paper. 
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= _, . . ... (2a) 
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. . . (2b) 

: O. . . . . . . (2d) 

/);. p, (r, 0) = /);. p 2 (r, 0) = 0 . (3) 

STATEMENT OF THE SOLUTION 

The solution is: 

2 + In ~ + ~ t::. PI (r, t D) = t D r 2 

. . (4a) 

..... (4b) 

ZONE I HAS PERMEABILITY KJ 

ZONE 2 HAS PERMEABILITY K2 

DIRECTION OF FLOW IS RADIAL 

NO FLOW 
ACROSS"B" 

FIG. 1 - DIAGRAM OF COMPOSITE SYSTEM. 
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B.'(...L) J o<l 

......... (4d) 

where a j is the root of 

Jo(r, O(j)~II-A/Fk J, (r, O(j)~O' = 0 

........ (4e) 

NUMERICAL RESULTS FOR 
A SPECIFIC CASE 

Problem conditIons for a specific case are 
listed in Table 1 which also contains the numerical 
results. Table 2 is a list of the first 48 values of 
a j for this case. The dimensionless solution 
presented and other dimensionless solutions which 

TABLE 1 - CALCULATED VALUES OF i\p V, 'D) FOR 
'1 = 0.5, Fk = 200 

'D ,= 0.001 ,= 0.1 ,= 0.3 ,= 0.5 ,= 0.7 ,= 0.9 ,= 1.0 ---- ---- ---- ---- ---- ---- ----
0 
0.001 
0.0025 
0.005 
0.01 
0.025 
0.05 
0.1 
0.25 
0.5 
1.0 
2.5 
5.0 

10.0 
25.0 
50.0 

100.0 

j 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 

0 0 0 0 0 0 0 

0.112 
0.283 0.006 

5.012 0.522 0.017 
5.467 0.911 0.130 0.024 
5.819 1.240 0.334 0.154 
6.248 1.662 0.716 0.504 
7.336 2.748 1.789 1.556 
9.021 4.432 3.463 3.212 0.001 

12.123 7.533 6.553 6.279 0.060 
20.232 15.640 14.641 14.329 1.065 0.026 0.005 
31.524 26.930 25.914 25.568 4.489 0.499 0.250 
49.664 45.067 44.033 43.651 13.328 3.867 2.963 
88.975 84.375 83.322 82.901 42.355 25.973 24.151 

141.295 136.694 135.636 135.206 92.120 73.999 71.946 
241.484 236.883 235.825 235.394 192.101 173.839 171.767 

TABLE 2 - VALUES OF aj FOR THE 
PROBLEM OF TABLE 1 

aj j a j a j 

0.3213 17 7.2816 33 13.8862 
0.7125 18 7.6070 34 14.1307 
1.1386 19 7.8626 35 14.4819 
1.5744 20 8.2522 36 14.9052 
2.0134 21 8.6819 37 15.3412 
2.4541 22 9.1196 38 15.7809 
2.8956 23 9.5599 39 16.2220 
3.3375 24 10.0013 40 16.6637 
3.7797 25 10.4432 41 17.1057 
4.2221 26 10.8853 42 17.5478 
4.6644 27 11.3273 43 17.9897 
5.1066 28 11.7692 44 18.431 I 
5.5483 29 12.2104 45 18.8714 
5.9893 30 12.6504 46 19.3093 
6.4286 31 13.0873 47 19.7396 
6.8635 32 13.5141 48 20.1330 
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may be obtained to the problem are related to the 
behavior of actual physical systems by the follow
ing equations: 

. (5a) 

b. P2 (r, to)' (5b) 

. . . . . . (5c) 

To illustrate the use of these equations, consider 
a system with the following properties and con
ditions: 

initial pressure 4,000 psia 

wellbore radius 1 ft 
inner zone radius 500 ft 

outer zone radius 1,000 ft 

c 1.44 x 10-4 atm-1 

J1 1 cp 

Bo 1. 21 

flow rate 8.27 BID 
thickness 10 ft 

k1 0.01 darcies 

k2 5 x 10-5 darcies 

porosity 0.1 

This system has the same values of '1 and F k 
as the one for which a dimensionless solution 
was obtained. Hence the results given in Table 
1 can be used. 

Figs. 2 and 3 contain the wellbore drawdown 
history. Fig. 4 shows pressure distribution at 
38.7 and 387 day s. Fig. 5 shows the build-up 
history if the well is shut in after 154.8 days of 
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FIG. 2 - BOTTOM-HOLE PRESSURE DROP FOR 

EXAMPLE CASE. 
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FIG. 3 - BOTTOM-HOLE PRESSURE DROP FOR 

EXAMPLE CASE. 
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FIG. 4 - PRESSURE DISTRIBUTION FOR EXAMPLE 

CASE. 
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FIG. 5 - BUILD-UP HISTORY FOR EXAMPLE CASE 

(SHUT IN AFTER 154.8 DAYS OF PRODUCTION). 
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production. The build-up history is obtained by 
using the drawdown curve and the principle of 
superposition. Fig. 6 is a plot of the rate of change 
of bottom-hole flowing pressure with cumulative 
production as a function of cumulative production. 

INTERPRETATION OF RESULTS 

Fig. 2 is a conventional semi-log plot of the 
early portion of the constant rate drawdown 
history for the example problem. The straight line 
portion, which lasts for about 20 hours, can be 
used to estimate flow capacity in the inner zone, 
but the ratio of outer zone radius (T2a) to inner 
zone radius (TI a) is not large enough for a straight 
line segment to be formed in the drawdown curve 
from which a reliable kh value for the outer zone 
could be calculated. In systems in which the 
ratio (T2a/TIa) is sufficiently large, Hurst 4 has 
shown that kh in the outer zone can be determined 
in this way. 

Fig. 3 is a plot of drawdown as a function of 
time on a rectilinear graph. In the period from 40 
to SO days, a nearly linear rdationship has 
apparently developed which would indicate that 
the reservoir limits had been reached and an 
entire reservoir containing about 0.20S x 10 6 

STB was undergoing uniform depletion. However, 
the later drawdown history beginning at about 
500 days is a straight line with a flatter slope 
indicating uniform depletion of a reservoir contain
ing about 0.463 x 10 6 STB. The first apparently 
straight line indicates uniform depletion of a 
volume somewhat greater than that contained in 
the inner zone while the final straight line indicates 
uniform depletion of a volume equal to that of the 
entire reservoir (0.463 x 10 6 STB). 

Fig. 4 shows pressure distribution at 3S.7 and 
3S7 days. The shape of these figures is that which 
would be intuitively anticipated. An unexpected 
result is that uniform depletion does not completely 
occur until considerable time has elapsed after 
the tran sient has reached the ou ter boundary. The 
explanation is that the rate at which fluid flows 
from the outer zone to the inner zone varies with 
time during the early history, and is still under
going change long after the pressure at the outer 
boundary has begun to drop. Curves shown in Fig. 
4 do indicate that fluid from the low permeability 
zone can contribute to production. 

Fig. 5 is the build-up curve which would be 
obtained if the well was shut in at the sand face 
after 154.S days of production. Again, as with 
the drawdown curve, the early portion can be used 
to calculate kh. The latter portion becomes 
steeper, indicating the presence of the low permea
bility rim and the curve terminates with the 
expected completely flat portion at the shut-in 
static pressure level for the reservoir. 

Fig. 6 is a plot of the rate of change of bottom
hole pressure with cumulative production as a 
function of cumulative production on log-log graph 
paper. This type of plot was suggested by L. G. 
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Jones 9 as a means of evaluating reservoir 
reserves. At a cumulative production of about I 

17 STB (equivalent to about two days flowing 
time), the curve becomes nearly flat at a value of 
0.74 psi/STB, indicating an initial oil content of 
about 0.137 x 10 6 STB, approximately that con
tained in the inner zone (0.116 x 10 6 STB). 
However, the curve then descends again and the 
final flat portion of the curve occurs at about 
0.22 psi/STB, indicating an initial oil content of 
0.463 x 10 6 STB which agrees exactly with that 
contained in the entire reservoir. The final flat 
portion of the curve is not achieved until cumulative 
production has reached about 4,600 STB or 
cumulative time is about 557 days. 

Thus, the short term (less than SO days) pressure 
behavior may be generally said to indicate a 
reservoir of the size of the inner, high permea
bility zone, while the pressure behavior over a 
much longer period (of several hundred days 
duration) is required to estimate reserves in the 
entire reservoir. 

CONCLUSIONS 

The analytical solution has been obtained to 
the problem of flow of a slightly compressible 
fluid in a limited, composite reservoir with radial 
symmetry produced by a well at the center. Numerical 
results have been given for a specific case. 
These results indicate that for this system (1) 
fluid can be produced from the low permeability 
zone, (2) short duration drawdown and build-up 
data can be analyzed to determine flow capacity 
and fluid content in the high permeability zone, 
(3) kh in the low permeability zone cannot be 
estimated from the conventional semi-log plot, 
and (4) pressure data over a long period (on the 
order of several hundred days) is required to 
estimate fluid content for the entire reserVOIr 
including the low permeability zone. 

NOMENCLATURE 

radius, cm 

pressure drop in inner zone correspond
ing to dimensionless problem 
conditions 

lomm .. __ 
0.1 0. <lZ 
"0 "0 

I.r-~ __ II 

.01
1 
L ...-i.~...LU.illIO-"---,...L.L.LlilJ.IO-;;:2-'-.L..LLU..l.101L3~-'....L.LLLUIO.L4;-'--'--'...Lli.w105 

Np ,5T8 

FIG. 6 -DETERMINATION OF RESERVOIR RESERVES 

BY L. G. JONES' METHOD. 
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pressure drop in outer zone correspond
ing to dimensionless problem 
conditions 

Fk = k1/k2 
Tla radius of interface between inner and 

outer zones, cm 

T2a radius of outer boundary of system, 
cm 

dimensionless time, defined by Eq.5c 
series coefficients defined by Eqs. 

4c and 4d 

jth characteristic value or eigen
value defined as the jth root of 
Eq. 4e 

permeability ln Inner zone, darcys 

permeability in outer zone, darcys 

rate of fluid withdrawal from system, 
cc/sec 

h reservoir thickness, cm 

J1 viscosity of flowing fluid, cp 

c compressibilityof flowing fluid, atm-1 

t 

"1PIL,/'I.P2L 
A,B,C,D 

time, seconds 

Laplace transforms of /'I.P1 and /'I.P2 
coefficients appearing in Eqs. A-I 

5 

T 

1o 
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and A-2 

Laplace transforms argument 

Ta/T2a 

Tla/T2a 

T2a/T2a (unity) 
modified Bessel function of the first 

kind, zero order 

modified Bessel function of the first 
kind, first order 

modified Bessel function ofthe second 
kind, zero order 

modified Bessel function of the second 
kind, first order 

Bessel function of the first kind, 
zero order 

Bessel function of the first kind, first 
order 

Bessel function of the second kind, 
zero order 

Bessel function of the second kind, 
first order 

Euler's constant 

eY 
coefficient of 5-1 in the numerator of 

Eq. A-ll 

coefficien t of 50 in the numerator of 
Eq. A-ll 

coefficient of 51 in the numerator of 
Eq. A-ll 

coefficient of 5 ° in the denominator 
of Eq. A-ll 

coefficient of 51 in the denominator 

of Eq. A-ll 

<Pmn Y m (..fFk T 1 aj) 1 n (VFk a j ) 

- Y n (1Fk a j) 1 m (yr;; T 1 a j) 

pressure drop in the inner zone of a 
specified physical system, arm 

pressure drop in the outer zone of a 
specified physical system, atm 

linear asymptote portions of (l..Pl and 

/'I.P2 
transient portions of (l..p 1 and /'I.P2 
oil formation volume factor, res bbl/ 

STB 

porosity, fraction 

cumulative oil production 
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APPENDIX 

PROCEDURE USED IN OBTAINING 
THE SOLUTION 

The general solutions to the Laplace transforms 
of Eqs. 1a and 1b are known to be: 

l1PIL(r,S)"(~) Ko (rrs)+(:) 10 (r,ys) 

(A-I) 

l1 P2L (r, S) = (~) Ko (r~)+(~) Io (r NSFk) 
. . . . . . . . (A-2) 

where A, B, C and D are functions of 5 determined 
by the boundary conditions. Hurst 4 has shown that, 
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as a consequence of the point sink condition, A = l. 
Application of the Laplace transforms of the 

remaining boundary conditions to Eqs. A-I and 
A-2 result in the following set of simultaneous 
equations in B, C and D: 

B ~h vsu + C [KO (rl ifsFkTI 
+ 0 t10 (rl NsFk ~ = tKo (rl tv'SU 

(A-3) 

.~,("Nsj+ c~ ',('1 ~j 

+0 ~ I, (""""~ • t' ('I ;IS] 
. . • . . . (A-4) 

........... . (A-5) 

Solution of Eqs. A-3 through A-5 for the co
efficients and substitution of these into Eqs. A-I 
and A-2 result in the following expression for t'lPIL 
and t...P2L: 

I [Ko(r rs)! Io(rINs) t.22 + II (rl.vs)t.II~ 
t.PIL--

S \10 (r l .vs)t.22+ II (rl'v""S) t.,d 

+ 1. r 1,(,"")1-" ('I"')'" H, ~,NS)' IIll 
S[ lIo(r, NS)t.22+1,(r,-VS)t.,d J 

. . . . . . . . . . . . . . . . . . . (A-6) 

I ~KO (rl~) II (rl ~)+ KI (rl~) 10 (rl rVS) I· 
fl. P2L·S { \ 10 (r l llfS)fl. 22 + II (rl.vs) fl.11 j 

. . . . (A-7) 
where 

~'1 = ~o (rl VSF;) II (A[SFk) 

+ 10 ( r, !v'SFk) K, (1I/SFk ~}A-8) 

[K I (r, A/SFk) I, (NsF;) 
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-I, ('I tISi'k) K, (N'SF;TI 
. . - . . . (A-9) 

Because the regions for which solutions are 
desired are bounded, it is to be expected that the 
solution will be found in the form of a Fourier
Bessel series. This suggests that there is no 
branch point at the origin of the complex S-plane. 
Verification is obtained by expanding t'lPIL and 
f'...P2L in terms of the following series approxima
tions which are valid near the ongln: 

~ I + j!2 Z4 
10 (ll 4 + 64 

- 8l 2 G I 8lj 4~ I 8~ Ko(l)--In-+l ---In- +j! ---In-
2 4 4 2 64 64 2 

- I t I I 8~ 3 t 5 I 8~ KI(l)--+j! --+-In- +l --+-In-
l 4 2 2 64 16 2 

................... (A-IO) 

where [) = eY and Y is Euler's constant. 

In this way, :\PIL and ~\"p2L are found to have 
the form: 

~ P L : (i) (N -I 5 - I +:0 5 0 + N I 5 + . • . ~ 
005 +01 5+... / 

. . . . . . . . . . . . . . . . (A-ll) 

which reveals a pole of order 2 at the origin. The 
residue of the inversion integrand at this pole is 
evaluated using the formula: 6 

e 5tO APLJ' 
5=0 

= 

Residue at the origin ... (A-I2) 

In this case, the residue will have the form: 

Residue at the origin. (A-l3) 

which is the linear time asymptote portion of the 
solution that will constitute the solution after the 
transient has disappeared. 

Eqs. A-IO contain sufficient numbers of terms 
that the coefficients in Eq. A-13 may be evaluated 
completely. When this is done the linear asymptotes 
for ;'I;.Pl and 1\,.P2 may be written. They are found to 

be: 
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8PI LA (r, to) • 2tO + In .f + ~2 -Fk ~n rl+~J 

+(F.-I) [,2-'~1 ........ (A'14) 

Along the negative real axis, b.p lL and /l,.P2
L 

will have simple poles at the zeros of the de
nominator (which is the same for !}.P1

L 
and b.p2

L
) 

if each of these terms is to satisfy Eqs. la or lb. 
The imaginary part of the denominator vanishes 
along the negative real axis and the zeros of the 
denominator are found to occur a t the zeros of 
Eq. 4e. The residues of eStD /l,.P1/..- and e StDtJ.p.2

L 
at these poles were evaluated usmg the follOWIng 
relation applicable at simple poles: residue of 
U (S)/g(S)] = U(Sn)/g '(Sn)] where the Sn are the 
zeros of g(S), and g' (Sn) =I O. 

The resulting series of terms constitutes the 
transient portions of the solutions. These senes 
have the form: 

::: 

co 2 
to -0( • 

L B je 
J 

(A-I6) 
j ::: I 

()O 2 
to 

L 
ex. . 

Cje 
J 

. (A-I7) 
::: 

j ::: I 

where B j and C j are defined by Eqs. 4c and 4d. 
In this portion of the work, the complex relation

ships between Bessel functions and modified 
Bessel functions were used. 2 ,6 

Considerable algebraic manipulation was m
volved in arriving at the compact form given for 
Bj and C j • This procedure was facilitated by the 
use of the following relations which are easily 
derived from the commonly known properties of 
Bessel functions: 2,6 

d~m n 
--'-a 
d O(j 

d~m n 
--'- a-

do<.· 
J 

J/Fk ~I ~m+l,n + ~m,n+~+(r::n ~mJn 

where !Dm,n is a combination of Bessel functions 
defined in the Nomenclature. Also, repeated use 
was made of Eq. 4e in arriving at the final forms 
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Bj and 0. 
The complete solutions (Eqs. 4a and 4b) are 

the sums: 

6P, (r,to) ::: 6P, + 6 P'T 
(A-I8) 

LA 

8 P 2 (r, t 0) ::: 6P2 LA + 6P 2 . (A-I9) 
T 

It can be shown that the final solutions satisfy 
the partial differential equations and the boundary 
conditions. In test problems, the initial condition 
was always found to be properly satisfied. As a 
further verification Lim L\p 1 and Lim /l,.p 1. /l,.P2 

r1 .... 1 Pk .... 1 
were considered. In both instances, the resulting 
solution is identical with the corresponding single
zone solution given by Muskat.7 Finally, it can 
be shown that Eq. A-I4 is equivalent to the solution 
obtained to the same problem by Hopkinson et al. 8 

Ref. 8, however, contains only the linear asymptote 
solution of the inner zone. 

APPROXIMA TIONS FOR /l,.p 1 (r, tv) 
FOR SMALL r AND SMALL tv 

In this r-t V region, the series convergence is 
slow. It is readily shown from tJ.P1L(r, s) that, for 
t V small: 

API (r,tD ) ~ ~ Ei «t
2

D 
)](A'20) 

PROCEDURE FOR NUMERICAL 
EVALUA TION OF THE SOLUTION FOR 

A SPECIFIC CASE 

1. The left-hand side of Eq. 4e was evaluated 
at a series of values of a to obtain estimates of 
the values of aj. 

2. More exact values of aj were obtained by a 
modified Newton method process, which is charac
terized by the following equations: 

t (o<,) - f (CK.2j 
f (o(,) +(8 eX) 

()(,- 0<.2 

100 
0<. ::: 0(. + (80<J') 

J J 

::: 0 

The interval (a 1 - a2) was chosen to be a very 
small fraction of the oscillatory period of the left
hand side of Eq. 4e. The value a j was assumed to 
have been computed when (oa) became suitably 
small. 

3. /l,.Pt (r, tv) and \P2 (r, tV) were computed for 

a series of values of rand td' 

Present use of the solution does not justify 
making the entire process an automatic one con
tained in a single program, although this could be 
done. Bessel function subroutines prepared by 
General Motors Corp. were used in the machine 
computations. 

*** 
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