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COSOw (S w + Sani)+ S O (3.26) 
S T = ~/cos 20 w + (k V/kH )sin 2 0 w 

For usual angles, the skin So is not less than -2 or -3. For very large angles, the response 
tends towards the horizontal well response, and So can be lower. When the vertical 
permeability kv is low compared to kH, G '  is small and the geometrical skin So becomes 
negligible. In such cases, the effect of the anisotropy is more pronounced and San i c a n  be 
more negative than So. 

In the following tables, geometrical skin So and &ni are estimated in a reservoir of 
thickness h = 1000 r,,. 

Table 3.4. Geometrical skin So 
kv/kH 1 i0 q - 10 -2 -10 -3 

8=30 ~ -0.8 -0.1 0 0 

0=60 ~ -3.3 -0.9 -0.1 0 

Table 3.5. Anisotropy. skin San i 
kt,, / kH 1 10-1 10 -2 10 -3 

0=30 ~ 0 0 -0.1 -0.1 

0=60 ~ 0 -0.3 -0.4 -0.4 

3.5.3 Associated specialized plot straight lines 

In theory, the two radial flow regimes can be analyzed using semi-log straight line 
techniques. The first defines the average permeability in the plane normal to the well, 
multiplied by the well penetration length. In practice, only the second regime, 
corresponding to horizontal flow from the producing interval, is seen. Semi-log analysis 
yields the permeability thickness product kH h of the producing zone and the total skin 
factor St.  

3.6 HORIZONTAL WELL 

Advances in drilling and completion technologies have placed horizontal wells among 
the techniques used to improve production performance. For example in the case of gas 
cap or bottom water drive, horizontal wells prevent coning without introducing the flow 
restriction seen in partial penetration wells. Horizontal drilling is also efficient to 
increase the well surface area for fluid withdrawal, thus improving the productivity. 
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3.6.1 Model description 

In this section, we consider first the pressure behavior of horizontal wells in 
homogeneous reservoirs with sealing upper and lower boundaries. As shown in Figure 
3.24 the well is strictly horizontal, the penetration half-length is L and zw defines the 
distance between the drain hole and the bottom-sealing boundary. The vertical part of 
the well is not perforated, there is no flow towards the end of the well and the well 
conductivity is infinite, kH and k~-are the horizontal and the vertical permeability. 

Characteristic flow regimes 

In an infinite system, the geometry of the flow lines towards a horizontal well produces 
a sequence of three typical regimes, as depicted in Figure 3.25. On the corresponding 
pressure and derivative response illustrated in Figure 3.26, three characteristic behaviors 
are displayed after the wellbore storage unit slope straight line: 

1. The first regime is radial flow in the vertical plane. On a log-log derivative plot, 
the wellbore storage hump is followed by a first stabilization. During this radial flow 

regime, the permeability-thickness product 2~/k~,k H L is defined with the average 

permeability in the vertical plane, and the well effective length 2L. 

2. When the sealing upper and lower limits are reached, a linear flow behavior is 
established. The derivative follows a half-unit slope log-log straight line. 

3. Later, the flow lines converge from all reservoir directions towards the well, 
producing a horizontal radial flow regime. The derivative stabilization corresponds to 
the infinite acting radial flow in the reservoir, the permeability-thickness product is kH 
h. 
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Figure 3.25. Flow geometry to an horizontal well. 

Extensions o f  the model  

In practice, the well geometry is not as simple as in the ideal configuration described on 
Figure 3.24. Most horizontal drain holes are not straight and parallel to the upper and 
lower boundaries, but show several oscillations over the formation thickness. 
Frequently, the skin is not uniform along the drain hole and in many cases the well does 
not produce on the complete length but in one or several segments. When the pressure 
gradient in the wellbore become large, the infinite conductivity hypothesis is not 
applicable and the horizontal well shows a finite conductivity behavior. 
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Figure 3.26. Horizontal well with wellbore storage and skin, homogeneous reservoir. Log-log 
scales, PD versus tD/CD. CD = 1000, Sw =0, L = 1000ft, h =100fl, rw =0.25fl, Zw/h =0.5, kv/kH =0.1. 
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The basic horizontal well model is presented in details Sections 3.6.1 to 3.6.7. 
Variations from the ideal horizontal well geometry are discussed in Section 3.6.9, 
fractured and multilateral horizontal well responses are described in Sections 3.6.10 and 
3.6.12. In Section 3.6.11, the influence of changes of reservoir properties in the 
horizontal or vertical directions, or change of fluid properties in the formation, are 
briefly reviewed. It is shown that when the basic horizontal well model depicted in 
Figure 3.24 is used to describe complex well or reservoir configurations, the effective 
well length and the average vertical permeability kz-resulting from analysis can be 
significantly in error. With complex wellbore conditions, k~, is frequently under- 
estimated whereas it can be over-estimated in layered systems with semi-permeable 
interbeds. 

Analytical solutions 

The first analytical solutions for uniform flux and infinite conductivity horizontal well 
responses have been derived in the mid 80's: Daviau et al. (1985), Clonts and Ramey 
(1986) and Rosa and Carvalho (1989) have used source and Green's functions whereas 
Goode and Thambynayagam (1987) and Kuchuk et al. (1991 a) obtained a solution by 
application of Laplace and Fourier transforms. With the infinite conductivity horizontal 
well model, the pressure is assumed constant along the wellbore. This is obtained by 
measuring the pressure of a uniform flux horizontal drain at an equivalent point in the 
well (Daviau, Clonts, Rosa), or by averaging the pressure along the length of the well 
(Goode, Kuchuk). The effect of pressure drop within the horizontal section, and the 
validity of the infinite conductivity assumption are discussed in Section 3.6.9. 

Horizontal well solutions are approximate. They are generated using the line-source 
solution, which is valid only when te)/r,,<: >25. For large negative skin, this condition is 
not satisfied at early time. Furthermore, when the anisotropy between vertical and 
horizontal permeability is large, small discrepancies can be observed between different 
horizontal well solutions. With the uniform flux distribution, the pressure is not uniform 
around the wellbore circumference, and the choice of the reference point on the 
wellbore can influence the result slightly. 

Dimensionless variables 

For a horizontal well with wellbore storage and skin, the dimensionless variables are 
defined with respect to the total formation thickness. Equation 2.3 gives the 
dimensionless pressure. 

In the case of permeability anisotropy between vertical and horizontal directions, an 
equivalent isotropic solution is used by introducing the anisotropy term kv/kH in the 
definition of the dimensionless vertical distances (see discussion of horizontal 
permeability anisotropy Section 3.1.5): when the vertical permeability kv is low, the 
apparent vertical distances are increased. The apparent open interval thickness ha and 
position of the horizontal drain hole with respect to the lower boundary of the zone zwa 
are defined respectively : 
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h a =hlkVkv (3.27) 

I k H  
Zwa = Zw k~/ (3.28) 

The circular section of the horizontal well is changed into an ellipse and the horizontal 
well behaves like a cylinder with the apparent larger equivalent radius rw~ of Equation 
3.6. With large anisotropy kv/kH, rwe can be 2 or 3 times larger than the actual wellbore 
radius and the resulting anisotropy skin San i clearly negative (see Table 3.1). 

Several skin coefficients are defined for horizontal wells" the mechanical infinitesimal 
skin S,,,, the anisotropy skin S,ni, the apparent skin during the vertical radial flow regime 
STy, the geometrical skin Sc and the total skin during the horizontal radial flow STH. The 
definitions of all skins are presented in detail in the subsequent sections. 

In the definition of the dimensionless terms, several well parameters can be used for the 
reference length, considering the wellbore radius r,, or, by analogy with wells 
intercepting a fracture of half-length xf (see Section 3.2, Equation 3.8), with the well 
half-length L. For the dimensionless time for example, tD can be expressed by Equation 
2.4 or by: 

0.000264k 
tDi ~ = At (3.29) 

~b,l, l C t L2 

No group of independent variables has been identified to provide a universal description 
of horizontal well responses, as it has been possible with most well models. Many 
authors use the ratio hD of the apparent thickness ha of Equation 3.27, by the well half 
length L, as a leading parameter of horizontal well behavior (similar to Equation 3.19): 

_ h__q< _/7 J kH (3.30) h> m 

L L I~ k v 

In the following examples, the wellbore radius rw is used in the dimensionless 
parameters definition. The dimensionless wellbore storage coefficient and the 
dimensionless time group t>/CD are given respectively in Equation 2.5 and 2.6. All 
examples presented below are generated with h = 100 ft and r,,, = 0.25 ft and the 
dimensionless pressure PD is presented versus the dimensionless time group tD/CD. 

The question of the reference in the definition of the dimensionless terms is further 
discussed in subsequent sections for the different skin parameters estimated on 
horizontal well responses. 



86 Wellbore conditions 

3.6.2 Equations for the characteristic regimes 

In the following sections, the different limiting forms of the Kuchuk et al. (1991 a) 
solution are presented, and the different skin coefficients defined from horizontal well 
responses are described. 

Radial flow in the vertical plane 

During the vertical radial flow regime, the equation of the semi-log straight line is 
expressed (Kuchuk, 1995): 

162.6qB/~ I x/k~. kH At 

~,ld C l t'~, 
-3 .23+0 .87S , , -21og2~ /kH ~kv )j (3.31) 

The second logarithm of Equation 3.32 corresponds to the negative anisotropy skin San~ 
resulting flom the equivalent wellbore radius rw~, of Equation 3.6. The total skin factor 
STV measured from the early time radial flow analysis combines the wellbore 
mechanical skin factor S,,. and Sani. 

- sw +so, , , -  s,, -ln 
2 

(3.32) 

In the following text, it is assumed that the wellbore mechanical skin factor S,,.. is 
uniform along the well length. The influence of non-uniform damage is discussed in 
Section 3.6.9. 

Linear flow regime 

During the linear flow regime, the pressure changes as the square root of the elapsed 
time: 

8.128qB / / d A t  141.2qBlz 141.2qB/d 
- ~  ~ + S,,. + S (3.33) 

The first term of Equation 3.33 is similar to Equation 1.25 for a well intercepting a fully 
penetrating vertical fracture. With a horizontal well, the flow lines have to converge 
towards the well located at z,, in the formation thickness. This partial penetration effect 
produces a pressure drop, expressed with the skin &. During the linear flow regime, the 
two skin effects &, and Sz are additive. 
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Nz - - l  l511k-~v ~ l o g I - ~ ( l +  k k ~  )sin(Trzwl]h (3.34) 

Equation 3.34 is approximate and only valid when the length of the well is long 
compared to the apparent thickness (Equation 3.30, h D < 2.5 ). 

Pseudo-radial flow from the reservoir 

Using the well half-length L as the reference for semi-log analysis of horizontal radial 
flow, Kuchuk et al. define: 

~ [  ] 141.2qB/~ Ap = 162.6 qB~ log kHA~t 141.2qB/~ Sw + Sz r 
kHh ~b/zctL2 -2.53 + 2ffkvkH L k H h 

(3.35) 

where SzT, is : 

S,~,-S_,:-0.5 k H --:- h2 _1 . . . .  z w + z w 
kv L ~ 3 h 

(3.36) 

In practice, the efficiency of horizontal wells is frequently described by the total skin 
STH defined with reference to a fully penetrating vertical well of radius r,,. With the 
usual radial flow relationship, 

Ap - 1 6 2 6  qB/a [ l~ kHA~t ] 
k H h ~b~ct r2w - 3.23 + 0.87STH (3.37) 

the total skin factor ST~ combines the wellbore mechanical skin factor &,, and the 
geometrical skin So. Comparing Equations 3.35 and 3.37, 

h 
I "----~-~ Sw + S G 

_- h_h S w +SzT +1.151 0.70+21og--~ 
2L ~] k V 

(3.38) 

the horizontal well geometrical skin So is expressed as : 
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S G 0.81 In L 
_ _ ~ + S z T  

F W 

/ - - -  + -- 1oo 1 + sin 
,',,. k~. ~ L h  

-0 .5  k# h 2 __1 Zw + Zw 
k t . - S  3 h 

(3.39) 

In Equation 3.39, the term [0.81-In(L/r,,.)] is very close to the pseudo-skin of a 

fractured well (Equation 3.12) and S-y. (Equation 3.36) describes the pressure drop due 
to the convergence of the flow lines before reaching the well. This term disappears 
when hi) of Equation 3.30 is very small, for example in the case of a long well and high 
vertical permeability kz.. The geometrical skin S(; of horizontal wells is further discussed 
in Section 3.6.4. 

3.6.3 Derivative behavior 

Description 

Due to the complex behavior of pressure and derivative responses, no type curves are 
available for horizontal wells. The derivative log-log curve is used for the identification 
of the characteristic flow regimes, but the analysis is made by generating pressure and 
derivative responses with a computer or, when applicable, by using specialized plot 
straight lines. 

In the example of a horizontal well response of Figure 3.26, the last derivative 
stabilization (on the 0.5 line) corresponds to pseudo radial j low in the producing zone 
whereas the first stabilization describes the initial radia/flow in the vertical plane. The 
average perlneability in the vertical plane is defined as the geometric mean of k~,, and kH 

and the permeability thickness product is 2x/k~.k H L. In dimensionless terms, the level 

of the first stabilization is expressed with the dimensionless apparent thickness hz) : 

(APl stab )D -- 0"25/7/D -- 0 25 /7 [k H (3.40) 

When both the upper and the lower boundary have been reached, there is no vertical 
contribution to the flow any more, and expansion of the drainage volume becomes 
strictly horizontal. If the length of the well is significantly larger than the reservoir 
thickness, most of the production is due to linear flow in front of the horizontal drain, 
and the flow contribution from the two ends of the well are negligible. During this 
intermediate time linear flow regime, the derivative follows a half-unit slope straight 
line. 
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Figure 3.27. Horizontal well. Influence of L. Log-log scales, Pz) versus tp/Cz). 
Cz) =1000, Sw =5, kv/kH =0.004, rw =0.25ft, Zw/h =0.5, L =3000, 1500 and 500ft. 

Once the linear flow regime has started, horizontal wells behave like wells intercepting 
an infinite conductivity vertical fracture of half-length x/.= L (Section 3.2). The presence 
of an initial vertical radial flow regime before linear flow is simply seen as a skin on the 
equivalent fracture model (Equations 3.34 during linear flow and 3.39 during pseudo- 
radial flow). 

Influence of L and kv / ki~ 

With the tD/CD time scale, the location of the half unit slope straight line indicates the 
effective well half-length L. When L is doubled, the line is displaced by a factor of 4 
along the time scale and, as the first derivative stabilization is an inverse function of L, 

zX/!)lst stab. is twice as low (Figure 3.27). 

In the examples of Figures 3.28 and 3.29, three well lengths are considered but the 
permeability anisotropy kv /kH is adjusted in order to keep the same derivative 
stabilization during the vertical radial flow regime. With Figure 3.28, the vertical 
permeability kv is relatively large and (APlst ~tab.)D = 0.223 is below the radial flow 0.5 

line. In such cases, the horizontal drain produces a negative geometrical skin (See 
discussion of the geometrical skin Sections 3.6.4 and 3.7). 
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Figure 3.28. Horizontal well. Influence of L, (Apl~t s t a b ) D  = 0.223. C1) = 100, Sw =0, kv/kH =0.2, 
L =250ft; kv/kH =0.05, L =500ft; kv/kH =0.0125, L =1000ft; h =100ft, r,, =0.25ft, z~/h =0.5. 
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Figure 3.29. Horizontal well. Influence of L, (Aplst stab)D =1. C'z)=100, &~=0, k~,/kH=O.O1, 
L =250ft; k~./kH =0.0025, L =500ft; k~./kH =0.000625, v=1000ft; h =100ft, rw =0.25ft, Zw/h =0.5. 

Conversely, when k~, is low, the first derivative stabilization is above 0.5 

((A/)lststab.)D = 1 on the examples Figure 3.29), and the horizontal well behavior tends 

to be equivalent to a well in partial penetration (Section 3.4). In the case of low vertical 
permeability, short horizontal wells exhibit a positive geometrical skin, and therefore an 
overall damaged well behavior. This is an important point and demonstrates that not all 
horizontal wells will increase productivity. 

10 
s 

C'~ 

The first vertical radial flow lasts until one of the upper or the lower boundary is 
reached. If the horizontal well is not centered in the zone thickness (z,,,/h ~ 0.5), a hemi- 
radial f low regime can develop when only the closest limit is seen. As long as the 
second sealing boundary is not reached, the shape of the derivative curve is similar to 
that of a vertical well near a sealing fault (Section 5.1). The second derivative 
stabilization is at a level twice the first (of Equation 3.40), as illustrated on the examples 
of Figure 3.30. 
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Figure 3.30. Horizontal well. Influence ofz~,. Log-log scales, PD versus tD/CD . 
Cz) =1000, Sw =2, L =1500ft, kv/kH =0.02, h =100ft, rw =0.25ft, zw/h =0.5, 0.25, 0.125. 
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The influence of zw/h on horizontal well responses is further discussed next and in 
Section 3.6.6, with a semi-log plot of Figure 3.30 examples. 

3.6.4 Skin of horizontal  wells 

Since several distinct flow regimes are observed during horizontal well responses, 
several skin parameters can be defined to describe the different flow geometries, even 
though the infinitesimal skin damage &, is constant at the wellbore. Furthermore, since 
the skin factors are a dimensionless pressure drop, several references can be used to 
normalize the different Apsk~n. In the following, we summarize the influence of the well 
and reservoir parameters on the three skins usually estimated from analysis. We show 
that, in the presentation of the analysis results, the reference used to express the skin 
parameters must be clearly defined. 

Mechanical skin Sw 

As an extension of the total horizontal radial flow skin concept STH used in Equation 
3.37, the infinitesimal wellbore skin Sw is sometimes also defined with reference to a 
vertical well of radius rw and a permeability kH. The resulting skin parameter S'w does 
not define the completion quality as does Sw of Equations 3.31 and 3.32. 

h / kH S 
= o.sh sw : (3.41) 

Geometrical skin Sc 
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Figure 3.31. Semi-log plot of the geometrical skin S~ versus L Irw. Influence of kv IkH. 
h/rw = 1000, Zw /h =0.5 and O. 1. 
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Figure 3.32. Semi-log plot of the geometrical skin S(; versus L/r,. Influence of h/i',,.. 
k~,,/kH =0.1, z,,/17 =0.5 and 0.1. 

On Figures 3.31 and 3.32, the geometrical skin S(~ of Equation 3.39 is graphed versus 
log(L/r,,). With Figure 3.31, several hypothesis of permeability anisotropy k~,/kH are 
considered, assuming a constant formation thickness h/r,,,. When the vertical 
permeability is very large (k~.-~ oo), the partial penetration term S:T cancels out, and the 
negative geometrical skin S(~ is a linear function of log(L/r,,). When a vertical pressure 
drop is introduced as on the examples k~,/kH _<1, the geometrical skin is less negative, 
and the curves reach the infinite vertical permeability behavior only when the drain hole 
is very lono 

For a given permeability anisotropy k~,/kH, increasing the formation thickness h/r,,, also 
produces more partial penetration skin effect as shown on Figure 3.32. Again, when the 
horizontal well becomes very long, the adverse effect of the vertical pressure drops on 
the geometrical skin S<~ is reduced. Ozkan and Raghavan (1989) indicate that the late 
time response of horizontal wells tends to be equivalent to that of vertically fractured 
ones when h D _< 0.25. 

The dotted curves on Figures 3.31 and 3.32 show the geometrical skin when the well is 
not centered in the formation thickness. With z, /h =0.1, a small additional pressure 
drop is introduced on the response, and S(j is slightly less negative (see discussion of 
Figure 3.33 in Section 3.6.6). 

Total skin STn 

As shown on Equation 3.38, the total skin STU estimated on horizontal well responses 
combines the geometrical skin Sc~ of Equation 3.39 and the mechanical infinitesimal 
skin Sw normalized by hD (to give S'w of Equation 3.41). For long horizontal drain holes, 
hD is in general smaller than unity and the effect of a wellbore damage is reduced. The 
opposite effect is observed on partially penetrating wells, where a mechanical skin 
damage &,, is amplified in the total skin (Equation 3.17). 
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3.6.5 Matching procedure on pressure and derivative responses 

Frequently, horizontal well responses do not exhibit the three individual flow regimes. 
Horizontal wells involve large wellbore volume, therefore a large wellbore storage 
coefficient and the wellbore storage effect lasts in general longer than in vertical wells. 
For this reason, the first radial flow may be difficult to identify. The last derivative 
stabilization is not always present within a normal test duration: the linear flow 
transition, before pseudo-radial flow regime, can last several log cycles on the time 
scale. The log-log diagnostic indicates the different flow regimes present on the 
response, and which parameters, or groups of parameters, can be estimated and which 
are not defined. Manual log-log analysis is not appropriate with horizontal wells, the 
match is performed on a computer-generated response. 

When the complete sequence of flow regimes is identified on the derivative response, 
the early time unit slope straight line and the final stabilization are used to define the 
time and pressure matches, yielding the permeability-thickness product kHh from 
Equation 2.9 and the wellbore storage coefficient C from Equation 2.10. The 
intermediate time linear flow regime is used to estimate the effective well half-length L, 
by adjusting the match of the generated curve on the half unit slope straight line. kH and 
L being defined, the first derivative stabilization determines the permeability anisotropy 
kv/kH. The match of the pressure curve during the initial vertical radial flow regime 
gives the mechanical skin S,,, (or STy). The geometrical skin So, and therefore the total 
skin STH are defined from the estimated well and reservoir parameters (Equations 3.39). 
When the analysis is consistent, the theoretical pressure curve matches the data during 
the complete response. 

Frequently, some segments of the well do not produce and the effective length 2L 
resulting from analysis is smaller than the drilled length. In Section 3.6.9, it is shown in 
the discussion of Figures 3.37 and 3.38 that, when several sections opened to the flow 
are distributed along the complete drain hole, a good match is frequently obtained by 
assuming the total drilled length. Then, the estimated vertical permeability kv can be 
greatly under estimated. 

When the vertical radial flow regime is masked by wellbore storage, the permeability 
anisotropy kv/kH cannot be assessed. The late time data give the total skin STH but, since 
the geometrical skin So is not defined, &,, is not reliable. Different hypothesis of kv/kH 
can change &,, from negative to positive values. 

If the test data ends before the final derivative stabilization is reached, the horizontal 
permeability kH and the total skin STH are not fixed, but the half unit slope straight line 
gives k# L 2 (see Equation 3.33). In such case, the vertical permeability kv can be 
estimated from the vertical radial flow derivative stabilization, if present. Again, the 
permeability anisotropy kv/kH and the mechanical skin &,, are not accurately defined, 
but the error on &,, is in general small. 
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Figure 3.33. Semi-log plot of Figure 3.30 examples. 

104 10 5 

0.125 
0.25 
0.5 

3.6.6 Associated specialized plot straight lines 

Four specialized analyses are possible, depending upon the type and the duration of the 
regimes defined by the derivative log-log plot. The wellbore storage analysis is the 
same as for vertical wells (Section 1.3.2). In the following section, straight-line analysis 
methods are presented for the vertical radial flow, linear flow and the horizontal pseudo 
radial flow regimes. 

Figure 3.33 is a semi-log plot of the Figure 3.30 examples for three different well 
locations z,~/h. When the well is centered (z, /h =0.5), the response exhibits two straight 
lines on semi-log scale and, as the permeability thickness product during the initial 
vertical radial flow is larger than kH 17, the first slope mvav is lower than the final straight 
line slope mHRF. When the well is off-centered, an intermediate time straight line of 
slope 2 mv~ can be observed during the hemi-radial flow in the vertical plane (curve z,,, 
/h =0.125). In such case, the final semi-log straight line is displaced upwards, because 
of the influence of_-,,/h on the geometrical skin Sc~ of Equation 3.39. A similar effect on 
late time semi-log straight lines can be observed in reservoirs with multiple boundaries 
(Figure 5.13 of Chapter 5 for example). 

Frequently, after wellbore storage, horizontal well responses only show transitional 
behaviors between the characteristic flow regimes, and no specialized analysis is 
possible. Furthermore, with build-up data, the Homer or multiple-rate superposition 
methods used on the specialized plots can distort the characteristic straight lines, as a 
result of the changes of flow behavior during the response (see Section 2.3.4). Except 
for the final horizontal radial flow regime, the straight-line methods presented in the 
following are seldom used. 
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Radial flow in the vertical plane 

During the first radial flow regime in the vertical plane, the equation of the semi-log 
straight line is expressed in Equation 3.31. The slope mve, F gives the product of average 

permeability in the vertical plane ~/kH k V , multiplied by the perforated half-length L: 

--x/kv k H L _ (3.42) 
mVRF 

When L and the permeability anisotropy kv/kH are known, the skin STy measured from 
the first semi-log straight line is used to estimate the infinitesimal skin S,~. From 
Equation 3.31, 

S w = 1.151[ p(lhr )-mvRFp(At = 0)_ log ~fkvkH 1(4 k~v +4k~H/ 3.23 l 
chact r2 + 2 1 ~  H ~ kv )+ 

(3.43) 

Provided the ~/k H k V L product is correctly estimated from mVR_F, the dependence of Sw 

on the anisotropy kv/kH and on the effective well half-length L are logarithmic. The 
calculation of the infinitesimal skin with Equation 3.43 is not very sensitive to an error 
on kv/kH or L (in Section 3.1.5, it is shown that San i is in general between 0 and - 1). 

When the nearest upper or lower sealing boundary is reached, the flow regime changes 
to hemi-radial flow and the response deviates from the semi-log slope mvav to follow a 
semi-log straight line of slope 2mvav. The time of intercept between the mvav and 2mvaF 
straight lines can be used to estimate the vertical permeability kv with a relationship 
similar to Equation 1.33 for a sealing fault (see section 5.1.3). Kuchuk et al. (1991 a) 
propose to use the time A/en d of end of the initial vertical radial flow (i.e. when the 
derivative deviates from the first stabilization, and not the mid point of the derivative 
transition as in section 5.1.1) with : 

(},l-let {2,2 2} k V = rain w, (h -  z w) (3.44) 
0.000264rcAte, d 

For a build-up analysis, the first straight line extrapolated pressure is not used, p* is 
estimated from the horizontal radial flow regime (Section 3.6.7). 

Linear flow regime 

This flow regime results of the influence of the two sealing upper and lower limits. As 
already mentioned, the horizontal well behaves like an infinite conductivity fractured 
well, but the linear flow regime can also be described as a boundary effect. In fact, by 
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rotating the horizontal well through 90 ~ the configuration is similar to a vertical well 
between two parallel sealing faults (Chapter 5.2). As opposed to a fractured well and 
channel responses, described by Figures 3.5 and 5.4 for example, none of the curves 
presented in Figures 3.26 to 3.30 present a long derivative half unit slope straight line. 
On horizontal well responses, the vertical radial and hemi-radial flow regimes dominate 
the early time data. Later, the transition between linear flow and the final pseudo radial 
flow regime is long, a flow contribution from the reservoir region at both ends of the 
well is felt a long time before the start of the final radial flow regime, and the pure 
linear flow regime is short lived. In order to see this characteristic regime, the distance 
between the two derivative stabilizations must be large. From Equation 3.40, it can be 
seen that the well length 2L must be very long compared to the apparent thickness h, of 
Equation 3.27 (small hz), Kuchuk et al., 1990). 

When the half unit slope derivative straight line is clearly established, the corresponding 
pressure points are analyzed on a plot of the pressure versus the square root of the 
elapsed time, as for a fractured well or a channel reservoir (see Sections 3.2 and 5.2). 
From Equation 3.33, the slope tnLF of the straight line gives kH L 2 " 

-) 

/ 1 L2 qB /,l 
kH = 16.52 mLF h ~bc, (3.45) 

The intercept p(0hr) of the linear flow straight line at time 0 can theoretically be used to 
estimate the infinitesimal skin &, (Kuchuk et al., 1990): 

S,~ = [p(0hr)-/)(At = 0)]+ 2.303 log 1 + sin (3.46) 
141.2qB,H 

Alternatively, when &, is known from previous vertical radial flow regime, z , / h  can be 
estimated from Equation 3.46 in the same way as, for channel reservoirs, the intercept 
p(0hr) defines the well location between the faults (see Section 5.2.5). It can be noted 
that the linear flow partial penetration skin effect S: of Equation 3.34 has the same form 
as the geometrical skin of channel reservoir (Equation 5.8), discussed in Section 5.2.5. 

Pseudo-radial flow from the reservoir 

The analysis of the pseudo-radial flow regime is identical to the semi-log analysis of a 
vertical well response (Equation 3.37). The straight line slope mnav gives the horizontal 
permeability thickness product kH h, the straight line intercept at 1 hour is used to 
estimate the total skin coefficient STn and, for a build-up periods, the extrapolation to 
infinite shut-in time gives p*. 

162.6qB/a 
kHh = (3.47) 

m H R F  
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STH -- 1.1511 p(lhr)-m~P(At = 0)_ log kH 1 qk/lclr2 w + 3.23 (3.48) 

Either the mechanical skin &,, or the geometrical skin Sc can be estimated from 
Equations 3.38 and 3.39. 

3.6.7 Build-up analysis 

On horizontal well responses, the flow geometry changes from early time to late time 
and three different characteristic regimes can be observed, as illustrated on previous 
derivative examples. For shut-in periods, the Homer and time superposition methods 
used for straight line and derivative analysis are based on the assumption that all 
superposed periods follow the same flow regime (see Section 2.2.2 and 2.3.4). In the 
case of complex responses, it is likely that the extrapolated periods follow different 
behaviors, and the multiple-rate superposition method is theoretically invalid. 

The resulting build-up derivative can be distorted (see discussion Figure 2.20 for 
example) but, since the log-log match of horizontal well responses is made on a 
computer generated multiple-rate pressure and derivative curves, the use of 
superposition time does not introduce error in the results. 

With straight-line methods, it is found in practice that unless the production time is very 
short and the well has been closed during the vertical radial flow regime, the 
superposition methods are applicable for all flow regimes. 

The semi-log superposition function can be used for radial flow analysis. As the 
producing time tp is generally significantly greater than At during the early time vertical 
radial flow regime, the Homer time can be simplified with 
log(t~ + At/At)~ log t p - log At (Equation 2.16), and the result becomes independent 

of the production history. On a Homer plot of horizontal well response, the first straight 

line gives the correct ~/kHk VL product with Equation 3.42. The first straight line 

extrapolated pressure is not used, the pressure at infinite shut-in time p* is estimated 
from the second straight line during the horizontal radial flow regime, if present. 

When the linear flow regime is clearly established, build-up responses can be analyzed 
with the Homer or multiple-rate superposition time corresponding to this flow regime 
(Equation 2.19). If the previous drawdown had reached the horizontal pseudo radial 
flow at time of shut-in, tp >> At then the method remains applicable. 
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Figure 3.34. Build-up test in a horizontal well. Log-log scales. 

r- v 

cz~cz 
4 4  

d d  
C 

O0 

a_ r  
Q.  

10 4 

10 3 

10 2 
| 

a 

n l a i i l a a a I I  � 9  I I  I I  I l l ~  
i l i a  I I  

�9 �9 40~pI8~149149 
�9 ~ 
�9 O O0 Q O M ~ ~  D 

101 , ~ , , 
10 .3 10 .2 10 -1 1 101 10 2 

E lapsed  t ime,  At (hours)  

Figure 3.35. Build-up test in a horizontal well. Log-log scales. 

3.6.8 Field examples 

In Figures 3.34 and 3.35, two examples of horizontal well build-up tests are presented. 
For the example in Figure 3.34, the response describes the wellbore storage unit slope 
straight-line, followed successively by the characteristic derivative hump, a first 
derivative stabilization during the vertical radial flow, an increase of derivative near 10 
hours, and the final derivative stabilization during the horizontal radial flow. This well 
shows a usual horizontal well behavior similar to the responses in Figure 3.26, all 
reservoir and well parameters can be estimated. The geometrical skin of this horizontal 
well is negative. 

A completely different response is obtained on the 100 hours build-up example of 
Figure 3.35. After a short wellbore storage effect, the derivative stabilizes during the 
first hour, and later it declines slowly until the end of the build-up test. No final 
derivative stabilization is seen; the horizontal radial flow is not reached. The overall 
behavior is similar to the low kv examples of Figure 3.29: the geometrical skin is 
positive. Straight-line analysis of this horizontal well response is only applicable during 
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the vertical radialflow regime, to provide ~/k H k V L and Sw. When the data is matched 

against a computer-generated model, a relatively unique analysis is obtained. The 
mechanical skin Sw is negative (no derivative hump is seen before the stabilization). 

3.6.9 Discussion of the horizontal well model 

In the following, several variations of the basic horizontal well model are considered. 
With finite conductivity wells, or when the skin is non-uniform along the well length, 
and with partially open horizontal wells, a pressure gradient is introduced in the 
reservoir along the well length. These wellbore conditions can distort the pressure 

response, especially at early time, and produce an under estimated ~Jkvk H L product 

when they are ignored. In case of non-rectilinear wells, the response is affected at 
intermediate times, with little effect one the estimated parameters. 

Finite conductivity horizontal wells 

In the previous discussion, the horizontal drain is assumed to be of infinite conductivity. 
Frequently, highly productive horizontal wells are completed with small diameters and 
the pressure gradients along the well length cannot be neglected, particularly when the 
flow becomes turbulent. Several authors have considered the effect of pressure drop in 
the wellbore on horizontal well responses (Dikken, 1990; Ozkan et al., 1995; Ozkan and 
Raghavan, 1997). 

Using the same approach as Cinco et al. (1978 a) for finite conductivity fractured wells, 
Ozkan et al. express the pressure drop with an equivalent wellbore permeability in the 
case of laminar flow. The conductivity of the horizontal well is defined as an inverse 
function of the well length 2L. They describe the flux distribution along the wellbore as 
follows, for high and low conductivity wells: 
�9 When the pressure gradients in the wellbore are negligible compared to the pressure 
gradients in the reservoir, the well shows a high conductivity behavior. At early time, 
the flux distribution is uniform along the wellbore. When the flow tends towards the 
horizontal radial flow regime, the two ends of the horizontal drain are the most 
productive sections, and the flux profile along the well length is described by a U- 
shaped symmetric distribution, similar to the flux towards a well with an infinite 
conductivity fracture (Figure 3.13). 
�9 In the case of a low drawdown (such as when the reservoir permeability is high, the 
thickness small and the horizontal section long), when the wellbore radius is not large 
enough, the pressure drop in the wellbore can be comparable to the pressure drop in the 
reservoir. The well behavior deviates from the infinite conductivity response. Due to the 
pressure gradients in the low conductivity well, most of the fluid enters near the heel of  
the well, resulting in a distortion of the flux profile from the uniform or U-shaped 
distribution, into an asymmetric shape. 
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As for the finite conductivity fracture model of Cinco et al., the effect of a finite 
conductivity horizontal well is more pronounced at early times. The presence of high 
pressure gradients in the wellbore can distort the pressure response during the vertical 
radial flow and linear flow regimes, since the flow in the reservoir becomes three 
dimensional (with a component parallel to the well axis). For low conductivity 
horizontal wells, the derivative is above the vertical radial flow stabilization of Equation 
3.40. The effect of wellbore friction is the highest in non-damaged horizontal wells, and 
it tends to be reduced when the mechanical skin factor S,, is large (Ozkan and 
Raghavan, 1997). 

By neglecting wellbore hydraulics, the product 2x/kz,k H L can be underestimated by a 

factor of 3 or more, but the permeability-thickness product kH h should be accurately 
defined. In the analysis results, both the vertical permeability kv and the effective well 
half-length L are too low, whereas the estimated mechanical skin factor S,,, is too large. 

During the horizontal radial flow regime, the authors explain that the wellbore pressure 
gradients simply introduce an additional pressure drop and the response of a low 
conductivity horizontal well becomes similar to that of a damaged infinite conductivity 
horizontal well (with a less negative total skin &-H). 

Bourgeois et al. (1996 a) propose to approximate the effect of wellbore friction on the 
total skin SvH by a rate dependent skin effect similar to the non-Darcy skin of gas wells 
(Section 7.2.4). The total skin of Equation 3.38 is then changed into : 

STH = 2L ~] k V 

where Dq describes the friction skin during the horizontal radial flow regime. 

(3.49) 

Non-uniform mechanical skin 

Ozkan and Raghavan (1997) investigated the influence of a non-uniform mechanical 
skin on infinite conductivity horizontal well responses. They concluded that, in early 
time response, a change of skin damage along the well length tends to move the 
derivative above the vertical radial flow stabilization of Equation 3.40. During the 
horizontal radial flow regime, the derivative stabilization can be used to estimate the 
kHh product but the well productivity (or the total skin STH) is slightly influenced by the 
skin factor distribution. STU is more negative when the two ends of the horizontal drain 
are not damaged, and the mechanical skin is mostly located in the central section of the 
well. No damage at the heel and toe of the well improves the productivity because of 
the U-shaped flux profile discussed earlier for high conductivity horizontal drains. As 
described next, a similar conclusion is obtained with partially completed horizontal 
wells. 
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Figure 3.36. Horizontal well. Influence of non-uniform skin. Log-log scales, PD v e r s u s  tD/CO. 
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On Figure 3.36, three examples of non-uniform skin distributions are compared to the 
response of a well with a constant mechanical skin factor S., = 4. The well length is 
divided into four equal segments and each segment is affected by a skin factor &,,, such 
as the arithmetic mean of &,, is constant at 4. In one case, the skin is linearly decreasing 
from one end to the other and, in the two other cases, the damage is either located on the 
two external segments or on the central sections. The examples Figure 3.36 confirms 
that, when the ends are not damaged, the total skin of the well STH is slightly more 
negative than on the three other responses (STH =-6 .4  instead of-6.2).  The authors 
conclude that stimulation treatments of horizontal wells should preferably concentrate 
on the heel and the toe. 

Partially open horizontal wells 

Frequently, some sections of the horizontal drain are not contributing to the flow and 
the effective well half-length L estimated by analysis is smaller than the length of the 
drilled well. It is shown in the following that the pressure behavior of partially open 
horizontal wells depends not only upon the effective well half-length L, but also upon 
the number and the distribution of the open sections along the well-drilled length 
(Goode and Wilkinson, 1991; Kamal et al., 1993; Yildiz and Ozkan, 1994). 

On Figure 3.37, three different repartition examples of the productive segments are 
compared. For all completion scenarios, the same effective well half-length is assumed 
with Ld=I/4L of the total drilled length (the response corresponding to the fully open 
horizontal well is shown with the thin dotted curves). When only one section is 
producing, the response corresponds to a horizontal well with half-length Ld.(thin solid 
curves). 
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Whatever is the repartition of the open sections, only the total length of the producing 
intervals influences the response during the initial vertical radial flow. At early time, the 
pressure and derivative curves generated for several producing intervals shows the same 
behavior as the single producing interval with similar L4/. Later, when the distances 
between the open intervals are large, each segment acts as a horizontal well, and a 
horizontal radial flow geometry develops around the different producing sections. 
Kamal et al. (1993) showed that, during this intermediate time radial flow regime, the 
derivative stabilizes at 0.5 divided by the number of open segments. When only the heel 
and toe of the well are producing (thick dashed pressure and derivative curves), the 
derivative stabilizes at 0.25 and, when four segments are open to flow, it stabilizes at 
0.125 (thick solid curves). 

Once the interference effect of neighboring segments is felt, the intermediate radial flow 
regime changes into linear flow and the derivative response reaches that of a single 
horizontal drain hole whose length corresponds to the distance between the two ends of 
the external open segments. During the final horizontal radial flow, the total skin STH is 
slightly more negative when the open section is more distributed: with 4 segments, 
STH = -6.7 on Figure 3.37 whereas STH = -6.3 in case of two segments and STH = -5.4 
with only one segment. 

When analyzing the example with four segments of Figure 3.37, the horizontal 
permeability is defined from the final derivative stabilization. The half unit slope 
derivative straight line gives access to maximum external distance of the open 
segments, which is 4 times the effective well length in this example. By assuming that 
100% of the well length is producing with a single horizontal drain model, Kamal et al. 
(1993) noted that the vertical permeability value resulting from the vertical radial flow 
analysis of the first derivative stabilization is under estimated (by a factor of 16 in the 
example). 
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Figure 3.38. Partially open horizontal well. Influence of the penetration ratio. Log-log scales, DD 
versus tD/CD. CD = 100, 4 segments with Sw~ =0, ZLeff = L/8, L/4, L/2 and L, L =2000ft, h = 100fl, 
rw =0.25ft, Zw/h =0.5, kv/ki4 =0.1. 

Figure 3.38 shows the influence of the penetration ratio for a horizontal well with four 
uniformly distributed segments of equal length. The ratio of the total length of the open 
segments to the length of the drilled well is respectively 12.5, 25, 50 and 100%. As 
already observed on Figure 3.37, all derivative curves merge at late time, during linear 
and pseudo radial flow, on the fully penetrating horizontal well response. Before, the 
derivative is displaced upwards. In case of low penetration ratio such as on the example 
12.5%, the flow is three-dimensional  at early time (Yildiz and Ozkan, 1994) with a 
decreasing derivative trend. Assuming no mechanical skin damage, the total skin STH of 
the fully penetrating horizontal well of Figure 3.38 is STH =-7.9. With a penetration ratio 
of 50, 25 and 12.5%, STn is still very negative with respectively-7.4, -6.6 and-5.1. 

Yildiz and Ozkan (1994) presented a general selectively completed infinite conductivity 
horizontal well model. They observed that the rate profile and the pressure response are 
affected at early time by a non-uniform skin distribution between the productive 
segments and use of vertical radial flow analysis is not possible. They concluded that it 
is not possible to estimate length and distribution of the open interval from use of 
transient analysis. 

Non-rect i l inear  horizontal  wells 

Horizontal wells are in general not parallel to the top and bottom sealing interfaces. In 
Figure 3.39, two examples of non-rectilinear horizontal well responses are compared to 
the straight horizontal drain hole model. Two symmetric geometries are considered: half 
of the well length is either centered in the formation thickness (z,,, =0.5h) or close to 
upper or lower sealing boundary (zw =0.05h). The other half, distributed in two equal 
segments at the heel and toe, is close to a boundary in the first case (zw =0.05h), and 
centered in the other. The linear horizontal well, shown with a thin pressure and 
derivative curve, is located at the average distance with zw =0.275h. 
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When some segments of the horizontal well are closer to the upper or lower boundary, 
the vertical radial flow regime ends earlier than when the well is a single linear segment 
at the average vertical distance. The transition from the first derivative stabilization to 
the half unit slope straight line is slightly distorted but, as shown Figure 3.39, the three 
derivative responses are very similar. The pressure curves are not distinguishable (the 
total skin STH being slightly less negative when the two ends of the well are off- 
centered). 

3 . 6 . 1 0  F r a c t u r e d  h o r i z o n t a l  w e l l s  

When fracturing horizontal wells, the fracture direction with respect to the wellbore 
depends upon the orientation of the well compared to the least principal stress. If the 
well is drilled in the direction of the least stress, several vertical fractures transverse to 
the well may be created along the well length. When the well is perpendicular to the 
least stress, the fractures are parallel to the well. 

Soliman et al. (1990) presented an approximate analytical solution for horizontal wells 
in the direction of the least stress, with circular finite conductivity transverse fractures. 
Larsen and Hegre (1991) investigated both circular transverse, and rectangular 
longitudinal, finite conductivity fractures. They assume the horizontal wellbore is not 
perforated outside the fractured segments. 

With a transverse fracture, the flow at early time is linear from the formation to the 
fracture, and radial inside the fracture to the wellbore. Larsen and Hegre (1994 a) note 
that this radial-linear f low geometry is similar to that of transient double porosity 
reservoirs, slab matrix blocks with a semi-log straight line of slope half that of the radial 
flow in the fissure system (Section 4.1.3). With transverse fractures, the radial-linear 
flow regime is characterized by a semi-log straight line of slope maLv half that of the 
pure radial flow in the fracture. Therefore, the slope is only a function of the fracture 
conductivity kjw.f: 
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mRL F = 81.3 qB/a 
k f  wf  

(3.50) 

With a longitudinal fracture, a bilinear flow regime develops at early time, as for a 

vertical well intercepting a finite conductivity fracture. On a pressure versus f a t  plot, 

the slope ruBLE, similar to Equation 1.27, is a function of the fracture half-length xfalong 
the horizontal well direction. When the reservoir permeability kH is known, rnBLV also 
gives access to the fracture conductivity kjwf: 

mBL F = 44.11 qB/a (3.51 ) 
x f ~ 4 x / # a c t k H  

In the case of a single fracture, the radial-linear or bilinear flow regime is followed by 
the formation linear flow, and finally the pseudo-radial flow towards the horizontal 

well. During the linear flow regime, the slope roLE of the pressure versus ~ straight 
line can be used to estimate the fracture extension if the formation permeability is 
known. For a transverse circular fracture of radius rj, the authors express mLF as: 

mLF = 5.17 hrf qkctk H (3.52) 

For a rectangular fracture of horizontal extension 2xj; a relationship similar to Equation 
3.45 is obtained: 

f 

=4.06 qB [ /a mLF 
hx f ~ ~cfk H 

(3.53) 

On a log-log derivative plot, the sequence of characteristic straight lines is, after 
wellbore storage, 
1. first stabilization in case of transverse fracture (radial-linear flow) or quarter unit 
slope with longitudinal fracture (bilinear flow), 
2. half unit slope during formation linear flow 
3. final stabilization during formation pseudo radial flow. 

The fracture conductivity determines the location of the first derivative straight line 
(stabilization or 1/4 slope). For high conductivity fractures, the derivative response is 
low during the radial-linear or bilinear flow regimes, the corresponding early time 
straight line is moved down on the log-log scale, and the formation linear flow develops 
early. It is shown in Section 3.6.3 that for non-fractured horizontal wells, the linear flow 
1/2 slope defines the effective well length. In the case of fractured horizontal wells, it 
gives the horizontal extension of the fracture. With long fractures, the 1/2 slope 
derivative straight line is displaced towards late times. 



106 Wellbore conditions 

For multi-fractured horizontal wells, the different fractures produce independently until 
interference effects between neighboring fractures are felt. Then, a compound linear 
flow develops before the final pseudo radial flow regime. 

At early time, if the independent fractures have similar characteristics, the response is 
directly proportional to the number of fractures and can be analyzed with a single 
fracture model by dividing the flow rate by the number of fractures (Larsen and Hegre, 
1994 a; Raghavan et al., 1997). Radial-linear (transverse fractures) or bilinear flow 
regimes (longitudinal fractures) can be analyzed on such multi-fractured horizontal well 
responses. Later, linear flow and pseudo radial flow around the different fracture 
segments (when the distance between the fractures is large) can also be identified. Once 
the interference between the fractures is felt, the response deviates like in the case of 
partially open horizontal wells presented in Section 3.6.9. The end of the compound 
linear flow regime, and start of the final pseudo radial flow, is independent of the 
number of fractures but depends only on the distance between the outermost fractures. 

3.6.11 Horizontal wells in reservoirs with changes of permeability 

In the following, it is shown that two types of reservoir heterogeneities affect the 
analysis results of horizontal well responses, even though the overall well behavior is 
apparently homogeneous. The influence of horizontal permeability anisotropy is first 
discussed. In layered reservoir, changes of permeability in the vertical direction can 
reduce the ability of vertical flow during the early time response. 

Horizontal permeability anisotropy 

With horizontal wells, it takes frequently a long time before the final horizontal radial 
flow regime is established. In the case of horizontal permeability anisotropy, the well 
response is sensitive to the well orientation (Goode and Thambynayagam, 1987; Kamal 
et al., 1993). 

With the three directions of permeability defined on Figure 3.40, the characteristic 
regimes of an horizontal well response are controlled by a different permeability: 

1. At early time, the average permeability during the vertical radial flow is ~[kzky J 

2. During the linear flow regime, only the permeability ky normal the well orientation 
is acting. 
3. The final horizontal radial flow regime defines the average horizontal permeability 

k H - ~kxk~ of Equation 3.3. 

When the isotropic horizontal permeability model is used for analysis, the vertical 
permeability kz is unchanged but the apparent effective half-length is: 
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Figure 3.40. Horizontal permeability anisotropy. 
Effective permeability during the three characteristic flow regimes towards a horizontal well. 

La - ~ k y / k x L  (3.54) 

Equation 3.54 shows that, if the horizontal well is in the minimum (maximum) 
permeability direction, apparent effective length increased (decreased). 

Horizontal wells in vertically heterogeneous reservoirs 

Even though the homogeneous reservoir model is currently used for many well test 
analysis, most reservoirs are stratified and permeability varies with depth. In most cases, 
variations of horizontal permeability with depth do not alter significantly the horizontal 
radial flow regime (see Section 4.2) but, as horizontal wells responses are also sensitive 
to vertical flow, the changes of vertical permeability over the producing thickness affect 
the response. 

In the following, the horizontal well model of Kuchuk and Habashy (1996) for a multi- 
layer reservoir with crossflow is used to evaluate the effect of vertical changes of kv. It 
is shown that when the heterogeneity between the different layers is moderate, the 
homogeneous reservoir model can be used to provide average permeability in both 
horizontal and vertical directions. Conversely, when horizontal wells are completed in 
formations with several interbeds of reduced permeability between the main layers, the 
single homogeneous layer model considered in the previous sections is not appropriate 
for accurate analysis (Suzuki and Nanba, 1991). Finally, as horizontal drilling is a 
common practice in reservoirs with a gas cap or lower water drive to prevent coning or 
cresting, the effect of a constant pressure upper or lower boundary is discussed. 

On the example Figure 3.41, the reservoir is described as a three-layer system. The 
horizontal well is centered in layer 2, layers properties are defined in Table 3.6. 

Table 3.6. Layered system of Figure 3.41 
Layer hi km kvi (kv / kH)~ 
1 30 15 1.2 0.08 

2 30 10 0.5 0.05 

3 40 8 0.24 0.03 
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Figure 3.41. Horizontal \yell in a three la,vers reservoir xvith crossflow. Log-log scales, Pz> versus 
tu Cl0. C/) =100. L =lO00ft. S, =0, h =lOOft (30+30+40), t",, =0.25ft, : ' , /h  =0.55, kHl,/'kH2=l.5, 
kn3/kH:=0.8. (kt/kn)l=O.08. (ki/kn):=O.05. (kt./ kn)3=O.03. 

The thin curves of Figure 3.41 describe the response of the same horizontal well in the 
equivalent homogeneous layer. The two model responses appear very similar, the use of 
the homogeneous layer approximation is acceptable. For a n layer system, the average 
horizontal permeability is defined (Section 4.2.5) as: 

kH = k,h, h, 
1 / 1 

(3.55) 

For the vertical flow, the changes of permeability are acting in series. The resulting 
average vertical permeability estimated during the vertical radial flow is defined with 
the average vertical permeability above, and below the horizontal drain. If the well is 
centered in layer j ' 

l-I 
h, + hj//2 

kv - 0 . 5  1 
J-1 

Z h,/k, + h /2k  
1 

h, + h j~2 

+ /+1 (3.56) 

h, /'k, + hJ //2kj 
j+l 

Equations 3.55 and 3.56 are applicable to the example Figure 3.41 with n=3 and j=2" 

kv  - 10.7 and k~. - 0.5(0.82 + 0 . 2 8 ) -  0.55. 

On Figure 3.42, a low permeability zone is inserted in the producing interval: the 
horizontal well is located in layer 3, below the semi-permeable wall (layer 2). The 
response shows first the vertical radial flow regime around the wellbore in layer 3 and, 
when both the bottom boundary and the low permeability interbed are reached, it tends 
to deviates into a linear flow regime as if layer 3 was isolated (the thin dashed curves 
describe the response of the horizontal well if layer 2 is sealing). Later, a crossflow is 
established through the semi-permeable wall and layer 1 participates to the production. 
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The derivative deviates below the half-unit slope straight line in a transition, and finally 
reaches the stabilization when the flow becomes horizontal pseudo-radial. 

A match of the stratified reservoir response with an equivalent homogeneous model is 
presented with the thin curves. The average horizontal permeability is defined by 
Equation 3.55. Due to the early deviation above the first derivative stabilization when 
the semi-permeable wall is reached, the effective well length used for this match is only 
55% of the true length. L being under estimated, the vertical permeability resulting from 
the vertical radial flow stabilization is too large (3.8 times the vertical permeability in 
layers 1 and 3, and 6.7 times the average vertical permeability of Equation 3.56). 

The presence of interbeds with very low kv, in a otherwise homogeneous reservoir, 
affects the shape of horizontal well response curves and consequently the productivity. 
On the stratified reservoir example Figure 3.42, the total skin STH of the horizontal well 
is STH =-6.48. In case of a non-rectilinear well with a segment of L/2 in layers 1 and 3, 
the total skin would be lower at STH =-6.53 and, without layer 2 (homogeneous 
reservoir) it is &H =-6.78. 

Kuchuk and Habashy (1996) use the layered reservoir model to describe the influence 
of a gas cap or bottom water drive on horizontal well responses. Since in the model 
boundaries between layers are horizontal planes, they assume that the interface between 
the fluids is not moving or distorted by cresting during the production. In the example 
of Figure 3.43, the horizontal well is located at the bottom of a layer overlaid by a gas 
cap. The sequence of regimes is vertical radial flow and hemi-radial flow until the gas 
interface is reached. Later, due to the large mobility and compressibility of the top gas 
region, the pressure tends to stabilize and shows the influence of a constant pressure 
boundary similar to the partial penetration example of Figure 3.21. If the thickness of 
the gas cap is not large enough, the response deviates from the constant pressure upper 
boundary behavior, and finally stabilizes to describe the total mobility of the oil and the 
gas zones. 
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Figure 3.42. Horizontal well close to a low permeability interbed. Log-log scales. CD =100, 
L =1000ft, Sw =0, h =100ft (45+5+50), rw =0.25ft, Zw/h =0.25, km=kHs=lO0 kH2, (kJkH)i=O.1. 
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Fleming et al. (1994) observed that many build-up tests from horizontal wells in a 
fissured reservoir with a large gas cap show several oscillations on the late time 
derivative response. They explain this phenomenon by the changes of saturation as the 
gas recedes during shut-in. The gas movement within the fracture network can be 
stepping, with intermittent liberation of gas pockets. Horizontal wells in double porosity 
reservoirs are further discussed in Section 4.1.4. In addition, multiphase reservoirs are 
presented in Chapter 8. 

3.6.12 Multilateral horizontal wells 

In single layer homogeneous reservoirs, the behavior of wells with multiple horizontal 
drain-holes follows a logic similar to partially open and multi-fractured horizontal 
wells, discussed in previous sections" 
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Figure 3.44. Multilateral horizontal well. Log-log scales, PD versus tD/CD . CD =100, L =1000ft 
(500+500 and 250+250+250+250), Swi =0, h =100ft, rw =0.25ft, k v / k #  =0. l, Zw/h =0.5. 
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�9 At early time, the different branches produce independently and, when the different 
drain-holes have the same skin, the behavior is equivalent to a single horizontal well 
with a total effective length defined as the sum of the lengths of all branches. 
�9 Later, the response deviates due to interference effects between the different 
horizontal sections. The flow geometry is a function of both horizontal and vertical 
distances between the branches, and orientation. An analytical simulator is required to 
properly interpret the well response. 
�9 Finally, pseudo radialflow towards the multilateral horizontal well can develop. 

On Figure 3.44, two examples of multilateral horizontal well responses are compared to 
the horizontal well of similar total length. The drain-hole sections are perpendicular 

with two and four branches (L and + shape). At intermediate time, the interference 
effects produce an increase of the pressure response, and the derivative deviates above 
the half unit slope straight line of the single drain horizontal well curve. No mechanical 
skin damage is assumed on the three curves. The total skin STH of the horizontal well is 
STH =-6.8 whereas for the multilateral well examples STH is respectively -6.6 and -6.2 

with the L and + geometries. 

For a given total effective length, increasing the number of intersecting branches does 
not improve the productivity of horizontal wells in reservoirs with isotropic horizontal 
permeability (Larsen, 1996 a; Salas et al., 1998). When the horizontal perforated 
segments do not intersect, Larsen shows that the total skin STH can be expressed as a 
function of the dimensionless distance rD between the segments, with a decreasing 
function of In rD. On the examples Figure 3.45 where the distance between the two 
producing segments is large enough, the response becomes independent of the 
orientation of the branches and the total skin of the two multilateral horizontal wells is 
STH=-7.1 (more negative than STH=-6.8 with one branch). The responses Figure 3.45 
tend to be equivalent to the example with two segments of Figure 3.37. 
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Figure 3.45. Multilateral horizontal well. Log-log scales. CD =100, L =1000ft (500+500), Swj =0, h 
=100ft, rw =0.25ft, kv/kH =0.1, zw/h =0.5. The distance between the 2 parallel branches is 2000ft, 
on the second example the intersection point is at 1000ft from the start of the 2 segments. 
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3.7 SKIN FACTORS 

3.7.1 Components of the total skin 

The different components contributing to the total skin Sr measured on well test 
responses are summarized on table 3.7 below. 

Table 3.7. Components of the total skin Sz 
Name Description Type 

S1,  I,' 

S~ 

hi 

&c 

D.q 

Infinitesimal skin at the wellbore. 

Geometrical skin due to the streamline curvature (fractured, partial 
penetration, slanted or horizontal wells). 

Skin factor due to the anisotropy of the reservoir permeability. 

Skin factor due to a change of reservoir mobility near the wellbore 
(permeability or fluid property, radial composite behavior). 

Skin factor due to the fissures in a double porosity reservoir. 

Turbulent or inertial effects on gas wells. 

Positive or 
negative 

Positive or 
negative 

Negative 

Positive or 
negative 

Negative 

Positive 

The geometrical skin &~ has been discussed in previous Sections for various well 
configurations. In the following, the relationship between &; and derivative curves is 
demonstrated by comparing three simple example responses. Negative skin produced by 
natural fissures is discussed in the double porosity Section 4.1.5, and turbulence effects 
are described in the gas well Chapter 7. 

3.7.2 Geometrical skin and derivative curves 

The magnitude of the geometrical skin is easy to visualize when the derivative response 
is considered. This can be illustrated by the theoretical response of three wells of radius 
r,,,, producing in the same homogeneous reservoir (Figure 3.46). Well A is a fully 
penetrating vertical well, well B is in partial penetration, and well C is a horizontal 
well. For the three wells, the infinitesimal skin S,, is set to 0. 
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Figure 3.46. Configuration of well A, B and C. 
A = fully penetrating vertical well, B = well in partial penetration and C = horizontal well. 
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Figure 3.47. Pressure and derivative responses of well A (vertical), B (partial penetration) and C 
(horizontal). Log-log scales, PD versus tD/CD. 

In Figure3.47, the derivative response of the vertical well shows the usual stabilization 
when the wellbore storage is over. In the case of partial penetration well B, a first 
derivative stabilization is seen during the radial flow in front of the perforated interval. 
The derivative response is above that of the vertical well until tD/CD =10 4, the area 
between the two curves is a measure of the positive geometrical skin. The larger this 
surface, the larger is the skin due to partial penetration. In terms of pressure response, 
the partial penetration curve B is above the curve for the vertical well. 

For the horizontal well C, the derivative response stabilizes at a low level during the 
vertical radial flow and the resulting geometrical skin is negative. The longer is the 
horizontal well, the larger is the area below the vertical well derivative response, and 
the more negative is the total skin. 

30 C3 D_ 

B,,. 

20 or) 
(D 

Q_ 

or) 

10 c-- 

o 
, R  

c-- 
(D 

E 
~5 0 

10-2 

A vertical well 
B partial penetration 
C �9 horizontal well ............................. SG>0 

, .."" 

.." 
,,." 

.o 
' ' ' ;  

10-1 1 10 10 2 10 3 104 105 106 

D imens ion less  time, tD/C D 
Figure 3.48. Semi-log plot of Figure 3.47 examples. 

The influence of the geometrical skin on the pressure response of wells A, B and C is 
illustrated on semi-log scale Figure 3.48. 
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