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Two recently postulated empirical models have been highlighted as useful alternatives to the Hyperbolic model (Lee, 

2012), viz: the Stretched Exponential Decline Model (Valko, 2009), and the Duong power law model (Duong, 2011).  In 
addition, the Weibull growth curve (Tabatabai et al., 2005) offers promise for modeling production decline curves based on 
its performance in modeling growth kinetics for biologic phenomena.  The first objective of this paper is therefore to provide 
a comparison of the performance of these models for two field examples.  Next, an uncertainty quantification framework for 
aggregating model results using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology will be described 
and applied for the two field examples.   

The paper begins with an overview of the formulation for the four empirical decline curve models of interest, i.e., 
Hyperbolic, SEDM, Duong and Weibull.  This is followed by an overview of the proposed uncertainty assessment protocol 
using statistical model averaging concepts.  Next, the procedures for fitting decline curves and aggregating model results are 
applied to two field data sets.  Finally, some conclusions based on this study are presented. 

 
Review of Decline Curve Analysis Models 
 
Arps’ Hyperbolic Model 
In the Hyperbolic model, the production rate declines with time according to the following relationship: 
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where q is the time-varying production rate, qi is the initial production rate parameter, b is the hyperbolic decline exponent 
parameter 0<b<1, and Di is the initial decline rate parameter.  Integration of Eq. (1) leads to an expression for cumulative 
production, Gp: 
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Analysis of production decline from tight gas and shale gas wells using Eq. (1) typically results in a best-fit value of 
greater than unity for the decline exponent parameter, b (Lee and Sidle, 2010).  This leads to the physically unrealistic result 
that cumulative production becomes unbounded as time increases, as can be seen from the following: 
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Fetkovich et al. (1987) have argued that such anomalous behavior, i.e., values of b > 1 in Eq. (1) or Eq. (2), arises when 
data from the transient-flow period are used to fit a model that is only appropriate during boundary-dominated flow.  
Supporting this assertion is the observation that best-fit b values that start out being greater then unity tend to decrease with 
time as more and more data become available (e.g., Blasingame and Rushing, 2005).   However, the use of the Hyperbolic 
model continues to remain popular for reserves estimation purposes.  A heuristic approach to keeping the long-term reserve 
estimates finite, with best-fit b values > 1, involves switching to an exponential decline with a prescribed minimum decline 
rate based on analogy or intuition (Harrell et al., 2004).    
 
Stretched Exponential Decline Model (SEDM) 
In order to avoid the arbitrariness associated with long-term reserve estimates from the Hyperbolic model, Valko (2009) 
proposed the SEDM, where production rate declines with time according to the following relationship: 
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where q is the time-varying production rate, q0 is the initial production rate parameter,  is the characteristic time parameter, 
and n is the exponent parameter.  Integration of Eq. (4) leads to an expression for cumulative production, Gp: 
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where  is the incomplete Gamma function (Abramowitz and Stegun, 1972).   
The SEDM model can be interpreted as the cumulative effect of multiple contributing volumes in exponential decay, but 

with different characteristic time constants (Valko, 2010).  Valko argues that this is a more plausible physical explanation 
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than the assumption of boundary-dominated flow – which may take extremely long times to develop in tight and shale gas 
reservoirs – required justifying the use of the Hyperbolic model.  Another benefit of the SEDM is that unlike the Hyperbolic 
model, it yields a finite value for ultimate recovery given positive values of n,  and q0.  As Lee (2012) has indicated, SEDM 
appears to fit field data from various shale plays quite well, and provides an effective alternative to Arps Hyperbolic model. 
 
Duong Model 
Since tight gas and shale gas reservoirs are generally produced after massive hydraulic fracturing, it is reasonable to assume 
that flow to wells in such systems will exhibit typical fracture-dominated characteristics.  For finite conductivity fractures, 
the flow will be bilinear which manifests as a quarter-slope line on a log-log plot of production rate v/s time, whereas for 
infinite conductivity fractures, flow will be linear and characterized by a half slope line on the same plot (Kamal, 2009).  
Under both conditions, Duong (2011) has shown that a log-log plot of q/Gp versus time should have a slope of -1.  However, 
analysis of field data from several shale gas plays has shown that in reality, the relationship between these variable is better 
described using the following empirical form: 
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where a is the intercept constant and m is the slope parameter.  The slope is negative, but m is always positive and greater 
than unity for shale gas reservoirs (based on field data).  Duong (2011) derived expressions for production rate and 
cumulative production v/s time that satisfy Eq. (6) as given below: 







 


  )1(

1
exp 1

1
mm t

m

a
tqq       (7) 







 


  )1(

1
exp 11 m

p t
m

a

a

q
G       (8) 

As Lee (2012) has indicated, Duong’s empirical model also appears to fit field data from various shale plays quite well, 
and provides an effective alternative to Arps Hyperbolic model. 
 
Weibull Growth Model 
The analysis of growth (or decline) forms a key element of many biological and clinical studies.  Many mathematical 
functions have been used to effectively describe population growth (or decline) under a wide range of conditions (Kingland, 
1982).  Some of the popular models include the Gompertz , Richards, logistic and Weibull models (Zeide, 1993).   The 
logistic model has also been used for analyzing decline curve data for unconventional gas wells (Clark, 2011).  However, 
Tabatabai et al. (2011) note that the Weibull model performs much better than the logistic model to accurately predict and 
analyze self-limited growth behavior.  In this study, the application of the Weibull model is explored in detail for analyzing 
production decline curves and forecasting reserves. 

The Weibull growth curve is a generalization of the widely used Weibull distribution for modeling time-to-failure in 
applied engineering problems (Weibull, 1954), and is expressed as: 
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where P(t) is the cumulative growth, M is the carrying capacity,  is the scale parameter and  is the shape parameter.  The 
cumulative growth, P(t), can be equated to cumulative gas production, Gp.  Carrying capacity, M, is the physical growth 
(production) limit for the system, and provides an upper bound on resource extraction – unlike the Hyperbolic model.  The 
scale parameter,  is that value of time at which (1-1/e) or 63.2% of the resources have been (or will be) produced.  The 
shape parameter, , describes how the rate of growth changes with time.  In unconventional gas wells, will typically be less 
than 1, indicating that the rate of growth is declining with time.   

The instantaneous rate of growth is readily obtained by differentiating Eq. (9): 
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In terms of parameter estimation, note that the three-parameter Weibull model is reduced to 2 unknowns if we take the ratio 
of production rate, q, and cumulative production, Gp, as the dependent variable.  Nonlinear regression analysis can then be 
used to estimate observed q/Gp v/s time to the ratio of Eq. (10 and Eq. (9).  In the next step, M can be estimated from fitting 
cumulative production data to Eq. (9).  
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Uncertainty Assessment using Model Averaging 
Previous studies of decline curve analysis using multiple models have shown that fits of comparable quality can be obtained 
for short data windows, but will produce very different 30-year EUR estimates (e.g., Valko, 2010).  To our knowledge, a 
formal approach for discriminating among such models using goodness-of-fit statistics (or any equivalent measure) does not 
appear to have been discussed in the shale gas literature.  Furthermore, if multiple models are indeed to be used for 
generating reserves estimates, it is not clear how the results from such models can be aggregated.  To this end, this study 
proposes a two-step approach based on related work on “model averaging” carried out in the context of hydrologic modeling 
(Beven and Binley, 1992; Neuman, 2003; Singh et al., 2010).  In the first step, alternative models are identified and used to 
fit the data.  In the second step, a weight is assigned to each model based on some goodness-of-fit statistics, and weighted 
mean and standard deviation of the desired performance measure (i.e., 30-year EUR) are calculated. 

Two commonly used model averaging techniques for hydrologic modeling are Generalized Likelihood Uncertainty 
Estimation or GLUE (Beven and Binley, 1992), and Maximum Likelihood Bayesian Model Averaging or MLBMA 
(Neuman, 2003).  Singh et al. (2010) have compared the performance of the heuristic GLUE approach to the more formal 
MLBMA techniques.  They observed that the Bayesian model averaging approach tends to concentrate model weights on 
only 1-2 best performing models, whereas model weights calculated by GLUE are more uniformly distributed across the 
model space.  In what follows, details of the GLUE methodology will be presented to demonstrate how results from different 
plausible models can be aggregated.   

  GLUE was originally proposed for dealing with model non-uniqueness in hydrologic catchment modeling.  It is based 
on the concept of ‘equifinality’, i.e., the possibility that the same final state may be obtained from a variety of initial states 
(Beven and Binley, 1992).  In other words, a single set of observed data may be (non-uniquely) matched by multiple 
parameter sets that produce similar model predictions.  The GLUE framework accepts many equally likely parameter 
combinations (realizations) or distinct model alternatives as a starting point.  The output corresponding to each realization (or 
model alternative) is compared against actual observations.  Only those realizations (or models) that satisfy some acceptable 
level of performance (e.g. a maximum sum-of-squared-weighted-residuals), also known as the behavioral threshold, are 
retained for further analysis, and the non-behavioral realizations (models) are rejected.  A “likelihood” for each model is then 
computed as a function of the misfit between observations and model predictions.  The weights (or probabilities) for each 
model are estimated by normalizing the likelihoods.  

One of the central features of GLUE is the flexibility with respect to the choice of the likelihood measure.  As the name 
“generalized likelihood” implies, any reasonable likelihood measure can be used appropriately as long as it adequately 
represents the experts’ understanding of the relative importance of different data sources used to assess model accuracy.  In 
the literature, many different likelihood measures based on goodness-of-fit metrics have been proposed.  One likelihood 
measure that has seen widespread usage in the GLUE literature is given by the inverse weighted variance: 
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where Lj is the likelihood for model j, 2
e,j is the variance of the errors (residuals) for model j, 2

o is the variance of the 
observations, and N is a shape factor such that values of N >>1 tend to give higher weights (likelihoods) to models with better 
agreement with the data, and values of N<<1 tend to make all models equally likely.  A simpler version of Eq. (11) can be 
defined using the traditional root-mean-square-error (RMSE) statistic as follows: 
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Normalizing the likelihoods, so that their sum is equal to one, gives the GLUE weight for each model: 
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where Lj is the likelihood functions described above in Eq. (11), Prj is the prior weight given to each model (i.e., 1/n if all are 
assumed equally likely prior to weighting), and n is the total number of models being considered.  From these weights, the 
aggregated 30-year EUR across the model ensemble (i.e., weighted average) can be computed from: 

  



n

j
jpjp GwavgG

1
30,30, )(       (14) 

 



SPE 161092  5 

and the standard deviation can be computed from 
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Field Examples 
Two field examples are presented from unconventional shale gas reservoirs to provide a comparative assessment of various 
decline curve analysis models, and to quantify the uncertainty associated with 30-year EUR estimates.  These examples will 
be first analyzed using the four decline curve analysis models described earlier, viz., Arps’ Hyperbolic model, Stretched 
Exponential Decline Model (SEDM), Duong model and Weibull model to estimate the 30-year EUR.  Next, goodness-of-fit 
statistics from these model fits will be used to compute a likelihood or weighting factor for each model using the GLUE 
methodology.  These weights will then be used to aggregate the individual model forecasts. 
 
Example – 1 
The first example is taken from a 15-year dataset presented as Example 3 in the rate/time analysis spreadsheet developed at 
Texas A&M University (Ilk et al., 2008).  During this period, the production declined from ~850 MSCF/d to ~35 MSCF/d, 
resulting in a cumulative production of  ~0.45 BCF.       
 
Arps’ Hyperbolic Model: For the Arps’ Hyperbolic model, the first step is to fit the ratio of observed production rate, q, and 
cumulative production, Gp, to the model (i.e., ratio of q/Gp from Eq. 1 and 2) to estimate the decline exponent, b, and the 
initial decline rate, Di, using Microsoft Excel’s Solver add-in.  The resulting fit, shown in Fig. 1, appears to capture the trend 
in the data very well, excepting for the downward trend at the very end of the data.  The resulting best fit parameters are b = 
1.82 and Di = 0.109 1/d.  In the next step, the initial production rate, qi, is calculated by fitting the observed Gp data to Eq. 2, 
with an excellent agreement as shown in Fig. 2.  The resulting best fit parameter is qi = 1.85E3 MSCF/d.  Fig. 3 compares the 
observed production rate, q, with that obtained using the best fit parameters in Eq. 1.  As in Fig. 1, the agreement is very 
good excepting at the very end of the data record.  Using these fitted parameters, the 30-year production rate, q30, is estimated 
to be 27.1 MSCF/d, and the 30-year cumulative production (30-year EUR), Gp,30, is estimated to be 6.39E5 MSCF. 
 
SEDM: For the Stretched Exponential Decline model, the first step is to fit the ratio of observed production rate, q, and 
cumulative production, Gp, to the model (i.e., ratio of q/Gp from Eqn. 4 and 5) to estimate the characteristic time parameter, , 
and the exponent parameter, n, using Microsoft Excel’s Solver add-in.  The resulting best fit parameters are  = 8.52E-2 
months and n = 0.144.  In the next step, the initial production rate parameter, q0, is calculated by fitting the observed Gp data 
to Eq. 5, with an excellent agreement as shown in Fig. 4.  The resulting best fit parameter is q0 = 5.00E3 MSCF/d.  Fig. 5 
compares the observed production rate, q, with that obtained using the best fit parameters in Eq. 4.  As in Fig. 3, the 
agreement is very good excepting at the very end of the data record.  Using these fitted parameters, the 30-year production 
rate, q30, is estimated to be 22.2 MSCF/d, and the 30-year cumulative production (30-year EUR), Gp,30, is estimated to be 
6.14E5 MSCF. 
 
Duong Model: For the Duong model, the first step is to fit the ratio of observed production rate, q, and cumulative 
production, Gp, to the empirical model postulated by Duong in Eq. 6 to estimate the intercept constant, a, and the slope 
parameter, m, using Microsoft Excel’s Solver add-in.  The resulting fit, shown in Fig. 6, appears to capture the trend in the 
data very well, excepting for the downward trend at the very end of the data.  The corresponding best fit parameters are a = 
0.764 1/d and m = 1.06.  In the next step, the theoretical rate at day 1, q1, is calculated by performing a linear regression of 
the observed production rate, q, against the time function f(a,t), which is the RHS of Eq. 7.  The resulting best fit parameter, 
based on Fig. 7, is q1 = 2.03E3 MSCF/d.  Fig. 8 compares the observed production rate, q, with that obtained using the best 
fit parameters in Eq. 7.  As in Fig. 3, the agreement is very good excepting at the very end of the data record.  Fig. 9 
compares the cumulative production, Gp, with that obtained using the best fit parameters in Eq. 8 – showing an excellent 
agreement.  Using these fitted parameters, the 30-year production rate, q30, is estimated to be 25.4 MSCF/d, and the 30-year 
cumulative production (30-year EUR), Gp,30, is estimated to be 6.30E5 MSCF. 

 
Weibull Model: For the Weibull model, the first step is to fit the ratio of observed production rate, q, and cumulative 
production, Gp, to the model (i.e., ratio of q/Gp from Eq. 8 and 9) to estimate the shape parameter, , and the scale parameter, 
, using Microsoft Excel’s Solver add-in.  The resulting fit, shown in Fig. 10, appears to capture the trend in the data very 
well, excepting for the downward trend at the very end of the data.  The resulting best fit parameters are  = 1.68E4 and  = 
0.577.  In the next step, the “carrying capacity”, M, is calculated by fitting the observed Gp data to Eq. 9, with an excellent 
agreement as shown in Fig. 11.  The resulting best fit parameter is M = 1.13E6 MSCF.  Fig. 12 compares the observed 
production rate, q, with that obtained using the best fit parameters in Eq. 8.  As in Fig. 10, the agreement is very good 
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excepting at the very end of the data record.  Using these fitted parameters, the 30-year production rate, q30, is estimated to be 
21.3 MSCF/d, and the 30-year cumulative production (30-year EUR), Gp,30, is estimated to be 6.12E5 MSCF. 
 
Aggregation of Results:  Fig. 13 shows an overlay of 30-year production rate forecasts from each of these 4 models.  As has 
been discussed previously, the models honor the trend of the data very well excepting at the end of the data record, i.e., 
around 180 months.  The 30-year forecast show that the Hyperbolic model yields the most optimistic projection, followed by 
the Duong model, SEDM and the Weibull model.  These trends are aloe reinforced in the overlay for the cumulative 
production shown in Fig. 14 (albeit with much less data scatter).  Table 1 shows the RMSE corresponding to the Gp fit for 
each of the models, and the likelihood (model weight) calculated using the GLUE approach, viz., Eq. 12.  The Weibull model 
has the lowest RMSE, and hence, the highest weight at 39.7%.  The weights for the other models are 27.6% for SEDM, 
22.2% for the Duong model and 10.6% for the Hyperbolic model.  Using Eq. 13, the weighted mean for 30-year EUR 
estimates can then be calculated as 6.20E5 MSCF with a weighted standard deviation of 9.72E3 MSCF, i.e., a coefficient of 
variation of 1.57%.   
 
Example – 2 
The second example corresponds to the 52 month field-averaged data from 237 wells in Denton County, TX, used in a recent 
SPE webinar presentation (Lee, 2012).   During this period, the production declined from ~8E6 MSCF/d to ~1.6E6 MSCF/d, 
with a cumulative production of  ~ 160 BCF.       
 
Arps Hyperbolic Model: For the Arps Hyperbolic model, the first step is to fit the ratio of observed production rate, q, and 
cumulative production, Gp, to the model (i.e., ratio of q/Gp from Eq. 1 and 2) to estimate the decline exponent, b, and the 
initial decline rate, Di, using Microsoft Excel’s Solver add-in.  The resulting fit, shown in Fig. 15, captures the trend in the 
data very well.  The resulting best fit parameters are b = 1.46 and Di = 0.121 1/d.  In the next step, the initial production rate, 
qi, is calculated by fitting the observed Gp data to Eq. 2, with an excellent agreement as shown in Fig. 16.  The resulting best 
fit parameter is qi = 8.30E6 MSCF/d.  Fig. 17 compares the observed production rate, q, with that obtained using the best fit 
parameters in Eq. 1.  As in Fig. 15, the agreement is very good.  Using these fitted parameters, the 30-year production rate, 
q30, is estimated to be 4.79E5 MSCF/d, and the 30-year cumulative production (30-year EUR), Gp,30, is estimated to be 
4.07E8 MSCF. 
 
SEDM: For the Stretched Exponential Decline model, the first step is to fit the ratio of observed production rate, q, and 
cumulative production, Gp, to the model (i.e., ratio of q/Gp from Eq. 4 and 5) to estimate the characteristic time parameter, , 
and the exponent parameter, n, using Microsoft Excel’s Solver add-in.  The resulting best fit parameters are  = 1.62 months 
and n = 0.276.  In the next step, the production parameter, q0, is calculated by fitting the observed Gp data to Eq. 5, with 
excellent agreement as shown in Fig. 18.  The resulting best fit parameter is q0 = 2.20E7 MSCF/d.  Fig. 19 compares the 
observed production rate, q, with that obtained using the best fit parameters in Eq. 4, showing very good agreement.  Using 
these fitted parameters, the 30-year production rate, q30, is estimated to be 2.52E5 MSCF/d, and the 30-year cumulative 
production (30-year EUR), Gp,30, is estimated to be 3.46E8 MSCF. 
 
Duong Model: For the Duong model, the first step is to fit the ratio of observed production rate, q, and cumulative 
production, Gp, to the empirical model postulated by Duong in Eq. 6 to estimate the intercept constant, a, and the slope 
parameter, m, using Microsoft Excel’s Solver add-in.  The resulting fit, shown in Fig. 20, appears to capture the trend in the 
data very well.  The corresponding best fit parameters are a = 1.06 and m = 1.17.  In the next step, the theoretical rate at day 
1, q1, is calculated by performing a linear regression of the observed production rate, q, against the time function f(a,t), which 
is the RHS of Eqn. 7.  The resulting best fit parameter, based on Fig. 21, is q1 = 8.07E6 MSCF/d.  Fig. 22 compares the 
observed production rate, q, with that obtained using the best fit parameters in Eq. 7, showing excellent agreement.  Fig. 23 
compares the cumulative production, Gp, with that obtained using the best fit parameters in Eq. 8 – also showing an excellent 
agreement.  Using these fitted parameters, the 30-year production rate, q30, is estimated to be 4.25E5 MSCF/d, and the 30-
year cumulative production (30-year EUR), Gp,30, is estimated to be 3.92E8 MSCF. 

 
Weibull Model: For the Weibull model, the first step is to fit the ratio of observed production rate, q, and cumulative 
production, Gp, to the model (i.e., ratio of q/Gp from Eqn. 9 and 10) to estimate the shape parameter, , and the scale 
parameter, , using Microsoft Excel’s Solver add-in.  The resulting fit, shown in Fig. 24, appears to capture the trend in the 
data very well.  The resulting best fit parameters are  = 89.5 and  = 0.765.  In the next step, the “carrying capacity”, M, is 
calculated by fitting the observed Gp data to Eq. 10, with excellent agreement as shown in Fig. 25.  The resulting best fit 
parameter value is M = 3.34E8 MSCF.  Fig. 26 compares the observed production rate, q, with that obtained using the best fit 
parameters in Eq. 8, showing excellent agreement as before.  Using these fitted parameters, the 30-year production rate, q30, 
is estimated to be 1.13E5 MSCF/d, and the 30-year EUR, Gp,30, is estimated to be 3.15E8 MSCF. 
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Aggregation of Results:  Fig. 27 shows an overlay of 30-year production rate forecasts from each of these 4 models.  As has 
been discussed previously, the models honor the trend of the data very well.  The 30-year forecast shows that the Hyperbolic 
model yields the most optimistic projection, followed by the Duong model, SEDM and the Weibull model – which is 
identical to the relative order observed in the previous example.  These trends are also reinforced in the overlay for the 
cumulative production shown in Fig. 28.  Note also the large spread in the forecasts because the forecasting period is roughly 
7 times that of the data window (360 months v/s 52 months) compared to the previous example, where the forecasting period 
was only 2 times that of the data window (360 months v/s 180 months).  Table 2 shows the RMSE corresponding to the Gp 
fit for each of the models, and the likelihood (model weight) calculated using the GLUE approach, viz., Eqn. 10.  The Duong 
model has the lowest RMSE, and hence, the highest weight at 61.0%.  The weights for the other models are 18.2% for 
SEDM, 12.6% for the Duong model and 8.2% for the Weibull model.  Using Eqn. 12, the weighted mean for 30-year EUR 
estimates can then be calculated as 3.79E8 MSCF with a weighted standard deviation of 2.72E7 MSCF, i.e., a coefficient of 
variation of 7.17%.   
 
Conclusions 
1. A new flexible model with physically meaningful parameters, i.e., the Weibull growth model, has been proposed for 

decline curve analysis from shale gas reservoirs.   
2. An approach to uncertainty assessment of reserves estimates via aggregation of model results using the GLUE 

methodology has been presented.  Here, the RMSE statistic is used to assign likelihoods or weighting factors to the 
different model under consideration. 

3. Two different case studies are presented to demonstrate that multiple decline curve analysis models can result in equally 
acceptable fits to historical data but yield (potentially) significantly different forecasts,  

4. Application of the GLUE methodology provides a simplified approach to uncertainty assessment due to multiple 
plausible models and aggregation of model results. 

5. A systematic framework for decline curve analysis should include: (a) use of multiple models, (b) checking for 
robustness of parameter estimates and EUR predictions, and (c) using RMSE-based weighting to assess uncertainty in 
reserves estimates. 

 
Nomenclature 
 a  = intercept constant in Duong model, 1/d 
 b  = Arps hyperbolic decline exponent, dimensionless 
 Di  = Initial decline rate, 1/d 
 Gp  = cumulative gas production, MSCF 
 Gp,30  = cumulative gas production at 30-years (EUR), MSCF 
 EUR  = Expected Ultimate Recovery, MSCF 
 L  = likelihood, dimensionless 
 m  = slope parameter in Duong model, dimensionless 
 M  = carrying capacity in Weibull model, MSCF 
 n  = exponent parameter in SEDM, dimensionless 
 N  = GLUE shape parameter, dimensionless 
 q  = gas production rate, MSCF/d 
 qi  = initial production rate parameter in Hyperbolic model, MSCF/d 
 q0  = initial production rate parameter in SEDM, MSCF/d 
 P  = cumulative growth (production) in weibull model, MSCF 
 p  = instantaneous growth (production) in Weibull model, MSCF/d 
 w  = model weight based on GLUE approach, dimensionless 
   = scale parameter in Weibull model, d  
 γ    = shape parameter in Weibull model, dimensionless 
     = variance of observed values in GLUE approach, (MSCF)2 
 e    = variance of errors (residuals) in GLUE approach, (MSCF)2 
   = characteristic time parameter in SEDM, d 
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Figure 1 Example 1, Hyperbolic fit to q/Gp ratio.    Figure 2 Example 1, Hyperbolic fit to Gp data. 

 
 
 
 
 

  
Figure 3 Example 1, Hyperbolic fit to q data.   Figure 4 Example 1, SEDM fit to Gp data. 

 
 
 
 
 

   
Figure 5 Example 1, SEDM fit to q data.    Figure 6 Example 1, Duong fit to q/Gp ratio. 
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Figure 7 Example 1, Duong fit to q v/s f(a,t).    Figure 8 Example 1, Duong fit to q data. 

 
 
 

 
 

  
Figure 9 Example 1, Duong fit to Gp data    Figure 10 Example 1, Weibull fit to q/Gp ratio 

 
 
 
 
 

  
Figure 11 Example 1, Weibull fit to Gp data.   Figure 12 Example 1, Weibull fit to q data. 
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Figure 13 Example 1, comparison of 30-year forecasts for q 
 
 
 

 
 

Figure 14 Example 1, comparison of 30-year forecasts for Gp 
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Figure 15 Example 2, Hyperbolic fit to q/Gp ratio   Figure 16 Example 2, Hyperbolic fit to Gp data 

 
 
 
 
 

  
Figure 17 Example 2, Hyperbolic fit to q data   Figure 18 Example 2, SEDM fit to q data 

 
 
 
 
 

  
Figure 19 Example 2, SEDM fit to Gp data   Figure 20 Example 2, Duong fit to q/Gp ratio 
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Figure 21 Example 2, Duong fit to q v/s f(a,t)   Figure 22 Example 2, Duong fit to q data 

 
 
 
 

  
Figure 23 Example 2, Duong fit to Gp data   Figure 24 Example 2, Weibull fit to q/Gp ratio 

 
 
 
 

  
Figure 25 Example 2, Weibull fit to Gp data   Figure 26 Example 2, Weibull fit to q data 
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Figure 27 Example 2, comparison of 30-year forecasts for q 
 
 
 

 
 

Figure 28 Example 2, comparison of 30-year forecasts for Gp 
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