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Summary. We propose a new method to estimate the Dykstra-Parsons coefficient that leads to a more statistically reliable indication 
of the true heterogeneity level. The new method extracts more information from the data to produce an estimate that gives half the 
error of the traditional approach. Several cases are considered to demonstrate the effects of more reliable Dykstra-Parsons coefficients 
on predicted reservoir performance. 

Introduction 
The heterogeneity of a petroleum reservoir is a vital factor when 
the performance of an enhanced recovery project is considered. 
Numerous studies l-5 have shown that permeability variations in 
the reservoir can be important in determining the amount of petro­
leum recovered. These variations are also influential in determin-

. ing how the petroleum is recovered; performance factors such as 
time to breakthrough and peak hydrocarbon production have im­
portant economic implications for a recovery process. Unfortunate­
ly, the influence of heterogeneity on process performance is usually 
quite complex; detailed studies involving substantial amounts of data 
and extensive analyses are needed to predict hydrocarbon recov­
ery accurately. 

The petroleum engineer, however, may have to make a prelimi­
nary assessment of the reservoir performance when extensive data 
sets are unavailable or detailed analyses are not justified. In such 
cases, one is forced to use a simple statistic (e.g., the Dykstra­
Parsons coefficient6 or Koval's heterogeneity factor3) to represent 
the level of heterogeneity. Such situations can arise, for example, 
during screening studies. Basic models 1-3 may then be applied to 
estimate the recovery behavior and to determine whether a detailed 
study is justified. The use of simple heterogeneity measures can 
also arise when results from different field trials 7,8 or different 
process models are compared. Thus, despite the complex nature 
of the heterogeneity/performance relationship, a need for simple, 
representative, heterogeneity measures still exists. 

In the past, several simple statistical measures of reservoir het­
erogeneity have been used. 1,3,6,8 The most popular appears to be 
the Dykstra-Parsons coefficient,6 K op. This coefficient has been 
found to be a good indicator of the level of heterogeneity9 and has 
been used in a variety of enhanced recovery studies. 2,4,5,1O,1l Jen­
sen and Lake,12 however, have shown that estimates of the true 
reservoir K OP can suffer from substantial statistical errors because 
the estimated value of Kop , (KoP)est, is computed on the basis of 
a limited number of samples. These statistical variations in (K OP )est 
can lead to significant errors in performance predictions. 12 To 
make the most of this useful heterogeneity measure, the statistical 
variations of (KoP)est should be reduced as much as possible. 

Three factors influence the variability of Kop estimates (assum­
ing random sampling). Two factors are the size of the data set and 
the true value of Kop for the reservoir. 12 Only the first of these 
two can be changed for a given reservoir. Not surprisingly, as the 
number of samples increases, the variations in (KoP)est decrease. 
Typically, a four-fold increase in the number of samples will halve 
the error. 12 On this basis, obtaining an acceptably accurate 
(KOP)est could prove rather expensive in terms of the number of 
permeability measurements required. Also, we already observed 
that there are times when predictions must be made with small data 
sets. The remaining factor that influences (KoP)est errors is the 
method used to compute (KoP)est. A prudent choice in the Dykstra­
Parsons coefficient estimator could also reduce (KoP)est variability. 

The method currently used in the industry to compute (KoP)est 
has not substantially changed from the original description by Dyk­
stra and Parsons. 6,9 Lambert 13 examined six estimators of K OP 
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by comparing, on a well-by-well basis, the values of (KoP)est for 
data from five different fields. Her study compared the estimators 
for agreement of values (bias). She did not, however, examine the 
statistical variability of the estimates (efficiency). The study by J en­
sen and Lake l2 proposed a new heterogeneity measure, U, that is 
related to Kop and gives estimates 30% less variable than (KOP)est. 

This paper proposes a method, based on the maximum likelihood 
technique, that improves on the traditional method of calculating 
(KoP)est. We show that, by obtaining more information from the 
data at hand, we can halve the variability of (KoP)est compared 
with the traditional method of estimation. This performance gives 
a further 30% improvement over that achieved by Jensen and 
Lake. 12 The implications of this improvement on performance pre­
dictions are considered in several examples. Because these results 
depend on estimating the underlying probability density function 
(PDF) of the permeability data, we discuss and compare some 
methods to do this efficiently. The results of a Monte Carlo study 
suggest two equally efficient methods. 

Estimation of the Dykstra.Parsons Coefficient 
This section begins by defining some statistical terms used in the 
analysis. The traditional method of estimating Kop and its vari­
ants are next reviewed with an emphasis on statistical properties. 
The proposed estimation method is then described and its proper­
ties developed. The section finishes with several examples where 
the proposed method gives substantially improved performance es­
timates. 

Definition of Statistical Terms. To compare estimators, the prop­
erties of their estimates must be determined. Suppose we have a 
set of data, containing n values (e.g., core-plug permeabilities), 
coming from a population that has a parameter with value u. Each 
datum is a random number whose behavior is dictated, in part, by 
the parameter u. We apply an estimator to the data to obtain an 
estimate of the value u, uest ' Uest is also a random variable because 
it is based on the n samples taken from the population. For the cases 
we consider (i.e., n~20), the PDF of Uest is approximately nor­
mal with mean U and variance sJ [written as N(u, sJ)]. The differ­
ence U-U is the bias of the estimator and, if u-u=O, the estimator 
is unbiased. The quantity Su is the standard error of the estimator 
and gives a measure of how variable the Uest can be. The normal 
distribution of Uest implies that there is a 68 % chance that 
Iuest-u I ~su and a 95% chance that Iuest-u I ~2su' When two 
estimators, A and B, are compared, if A produces an estimate with 
a lower standard error than that ofB, then A is more efficient than B. 

Several studies 13-15 found permeability popUlations that are not 
log-normally distributed. Jensen et at. 15 proposed that permeabil­
ity, k, is "p-normally distributed" (p-ND). That is, permeability 
data from a population will have a PDF such that (k)P is approxi­
mately normally distributed for some p, -1 ~p~ + 1. Whenp=O, 
the PDF is the log-normal distribution. 15 We assume that perme­
ability is p-ND in this study. 

Review of the Conventional Kop Estimator. The technique of 
computing (KoP)est described by Dykstra and Parsons6 requires 
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Fig. 1-Percentlle estimates based on best-fit line. 

estimating the 16th and 50th percentiles, k(16) and k(50) with 
k(16) s k(50) , from a set of ordered permeability data. The data are 
assumed to be log-normally distributed. The method calls for the 
data to be plotted on a log-normal probability plot and a best-fit 
line to be drawn and used to establish [k(l6)]est and [k(50)]est (Fig. 
1). The authors stipulate that if the data do not lie approximately 
on a straight line, the best-fit line is to be drawn by weighting the 
central portion more than the tails. The two percentile values are 
then used to define the heterogeneity measure as 

Kop = l-k(l6/k(50) ................................ (1) 

or, in terms of the estimated quantities, 

(KbP)est = I -[k(l6)]est/[k(50)]est' ..................... (2) 

where T denotes the traditional method. This procedure, while call­
ing for a log-normal probability plot, does not require that the data 
be log-normally distributed; a best-fit line may stilI be drawn and 
the percentiles estimated. Part of the success of the Dykstra-Parsons 
measure, however, appears to result from the fact that many reser­
voirs have nearly log-normal permeability distributions. 

Subsequent descriptions of this technique vary in the details con­
cerning the best-fit line. For example, some authors l6,17 do not 
mention the different weightings of the central and tail portions of 
the plot. Other descriptions1,18,19 of the Dykstra-Parsons method 
omit mention of the best -fit line altogether; the 16th and 50th per­
centiles are estimated directly from the data. This approach elimi-
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Fig. 2-Theoretical performance of estimator bias for 
K DP =0.70. 
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nates the subjectivity of best-fit lines. Willhite" discusses an 
example where the fitting of such a line can produce unrepresenta­
tive models and results. The problem, however, appears to be caused 
by applying the procedure to data that are not log-normally dis­
tributed. 

In the case where permeability is log-normally distributed [i.e., 
logik) is N(mko Sf)]' Jensen and Lake l2 give the following re­
sults for a sample size n ~ 20. 

1. The bias of (KoP)est is slightly negative «2%) with 

mbp=-0.7488sf exp(-sk)/n . ...................... (3) 

2. The standard error of (KoP)est may be substantial and is given 
by 

sbp= 1.486sk exp( -sk)l"';-; . ........................ (4) 

Because Kop =l-exp(-sk) ........................... (5) 

for the log-normal distribution, Eqs. 3 and 4 can also be expressed 
in terms of the true Kop of the permeability distribution: 

mbp=-0.7488[loge(l-Kop)]2(I-Kop)/n ............ (6) 

and sbp = -1.486 10ge(l-Kop)(l-Kop)/..In . ........... (7) 

Figs. 2 and 3 show the behavior described by Eqs. 6 and 7, re­
spectively, when ~p=O.70. 

The errors in (K op)est become particularly important for reser­
voirs with high levels of heterogeneity (Kop~O.7). Unfortunate­
ly, these high values are very common. 9 Variations of 10% in Kop 
at high heterogeneity levels can make significant differences in pre­
dicted recovery performance, as we will see in the examples. Some 
investigatorsl,12 have suggested new heterogeneity measures be­
cause of this sensitivity. An alternative approach, taken here, is 
to use a more efficient estimation technique. 

Presentation ofthe Proposed Kop Estimator. We begin with the 
case of log-normal permeability data. Using the additional infor­
mation afforded by knowing the PDF explicitly in the estimation 
procedure results in a more efficient estimator. Eq. 5 suggests that, 
if we can estimate Sk efficiently by use of a maximum likelihood 
(ML) approach, an estimator for Kop with lower error will result: 

(Ktjt)est = l-exp[ -(Sk)estl .......................... (8) 

In Appendix A, we show that for the estimate 

(Sk)est =[1 +0.25/(n-l)]{[1I(n -1)]E[loge(kj ) -(mk)est]2} ~, 
. ....................... " .......... (9) 

where (mk)est=(lIn) E logik j ) and the summations are over the 
n data, kl' k2 . . . kn , the estimator of Eqs. 8 and 9 has the follow­
ing behavior: 

mtjt=-O.250sl exp(-sk)ln ....................... (10) 
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Fig. 3-Theoretical performance of estimator standard error 
for KDP =0.70. 
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Fig. 4-0bserved and theoretical estimator performance for 
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and sg~=0.707sk exp(-sk)/...r;; ...................... (11) 

By use of Eq. 5, Eqs. 10 and 11 can be re-expressed in terms of 
the population Kop: 

mg~= -0.25[loge(1-Kop)]2(1-Kop)/n ............. (12) 

and sg~ = -0.707 10ge(1-Kop)(1-Kop)/...r;; . .......... (13) 

These results are also shown in Figs. 2 and 3 for the case 
K op =0.70. 

A comparison of Eqs. 3 and 4 with Eqs. 10 and 11 reveals the 
following features. 

I. The ML estimator has a slightly smaller bias but still under­
estimates (on average) the heterogeneity level. 

2. The ML estimator has about one-half the standard error of 
the traditional estimator. Alternatively, this means that the sample 
size for the proposed estimator is one-quarter that required by the 
Eq. 2 estimator for the same standard error. 

Furthermore, the estimator of Eqs. 8 and 9 has a standard error 
that is 30% smaller than the heterogeneity estimator proposed by 
Jensen and Lake. 12 The proposed method puts the efficiency of 
heterogeneity estimation (it la Dykstra-Parsons) on par with that 
of the Lorenz coefficient estimator, which Jensen and Lake 12 

showed to have superior ability in predicting waterflood per­
formance. 

The preceding analysis assumed that permeability is log-normally 
distributed (p=O). In Appendix B, we develop corresponding ex­
pressions for the case whenp *0. For both cases, Appendix C gives 
a comparison of the traditional and proposed estimators for data 
sets from two fields. Whatever the value ofp, it must be estimated 
to use the ML technique proposed here. A good technique for evalu­
ating Pest is an important element in the procedure; a bad estimate 
for p (e. g. , Ip est -pi> 0.1) could degrade the benefits of the new 
technique. We discuss two ways of estimating p efficiently later. 
Using these estimators in Monte Carlo simulations, we found that 
the actual performance of the ML approach is closely matched by 
the theory (Fig. 4). 

In the context of estimating KDP , a knowledge of the exponent 
p nearly quadruples the effective number of data on hand. More 
information is being extracted from the available data by estimat­
ing both the standard deviation, Sb and the exponentp. The merits 
of estimating p may go beyond the purposes of this study, how­
ever. Jensen and Lake12 showed that the parameter p can be as 
important as mobility ratio in waterflood performance. This pa­
rameter may have equally important performance implications for 
enhanced recovery methods. 

Impact of Estimator Errors on Recovery Performance. To dem­
onstrate the importance of efficient estimation of K DP to predicted 
recovery performance, we chose three examples that use en-
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Fig. 5-0bserved estimator performance for p = 0 and 
Kop =0.70. 

hanced recovery models described in the literature. In all cases, 
we suppose that 40 samples are available from a reservoir having 
a log-normal termeability distribution and with Kop=0.70. 
From Eq. 7, sop=0.085, and from Eq. 13, sg~=0.040. Conse­
quently, the 68 % confidence limits (neglecting bias) are 
0.615:5(Kbp)est:50.785 and 0.660:5(Kg~)est:50.740 for the 
traditional and ML estimators, respectively. 

Claridge' considered the effects of heterogeneities on enhanced 
recovery processes by using computer simulations to model a 
graded-bank polymer flood in a 1O-layer reservoir with crossflow. 
The drive water was 10 times more mobile than the polymer front. 
With this model at 2 PV of throughput, the 68 % confidence limits 
of the traditional estimator translate to a range in oil recovery from 
35 to 60%. For the ML estimator, the oil recovery ranges from 
44 to 53%. 

Paul et al. 2 presented a simplified model for predicting micel­
lar/polymer performance. The effects of heterogeneity are accounted 
for in the vertical sweep, E v, and mobility buffer, EMB , efficien­
cies by stipulating a value for Kop. For a dimensionless slug size 
of 1 .3 and a 0 .I-PV mobility buffer, the predicted sweep efficien­
cy (Es)est=[(Ev)est(EMB)estl varies by ±27% [0.15:5(ES)est 
:50.26] when (Kbp)est is used, while (Es)est varies by ±12% [0.18 
:5(Es)est:50.23] when (Kg~)est is used. The predicted break­
through time, which is inversely proportional to the effective mo­
bility ratio, is also affected by the variations in (KoP)est. The 68% 
limits on the traditional and ML estimators correspond to errors 
of ±37 and ±17%, respectively, on the breakthrough times. 

For unstable miscible displacements, we consider Koval's3 
model. The breakthrough time, tbl' predicted by this model is in­
versely proportional to a heterogeneity factor K K' Koval shows that 
KK is related to Kop and provides a curve (his Fig. 20) for which 
Claridge' gives a polynomial curve fit. When Claridge's curve fit 
on the above standard errors for (KoP)est is used with an assumed 
viscosity ratio of 20, the 68 % points for the traditional approach 
represent the range 0.097:5 (tbt)est :50.145, while the ML approach 
gives O. 107:5 (tb/)est:50. 126. Hence, an error band has been re­
duced from 40 to 17% with the more efficient ML approach. 

The above examples all relate to enhanced recovery processes. 
Similar results pertain for waterflooding. When a unit mobility ra­
tio and a 50% water cut are used in the Fassihi's20 correlation, 
variations of one standard error in (Kbp)est translate to 0.20:5 
(Ev)est :50.49. For one-standard-error variations in (K{!fhest' the 
sweep variation is 0.27:5 (E V) est :5 0.41, reducing the range by 
one-half. 

Taking the 95 instead of the 68 % points would put the ML tech­
nique in a yet more favorable light for all the preceding examples 
because a reservoir with (Kbp)est =KDP+2sbp =0.87 is consider­
ably more heterogeneous than a reservoir with (Kg~)est = K DP + 
2sg~ =0.78. A similar situation exists when the heterogeneity is 
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underpredicted. The relationship between Kop and performance is 
generally nonlinear. 1,12 

Exponent Estimation 
This section concerns finding an efficient technique for evaluating 
Pest' the exponent in the ML approach to estimating KDP ' We be­
gin by describing and comparing several possible estimators. The 
results of a Monte Carlo study are then presented. 

Review of Exponent Estimators. Several methods to estimate the 
exponent P from data exist. Each method was designed to satisfy 
particular criteria. For example, the Box and Cox21 method is an 
ML technique, while Hinkley's22 method selects the exponent that 
renders the transformed PDF as symmetrical as possible. Emer­
son and Stoto's23 technique is also a symmetry-oriented method, 
but t~ey. use a different approach from Hinkley. In any event, the 
apphcatlon of these estimators to a data set would likely result in 
three different estimates of P because each estimator has a differ­
ent bias, efficiency, and criterion that it is meant to satisfy. 

In the past, Emerson and Stoto's23 method was used by Jensen 
et al. ,15 who found that it gave good results. For their problem, 
however, they needed a method that did not assume the result that 
they were trying to demonstrate-i.e., that permeability is p-ND. 
Because we are assuming that permeability is P-ND for this study, 
we can take advantage of this knowledge to establish a better ex­
ponent estimator. 

The ML approach is used to establish a likelihood function21 

L(p)=-n/210ge(.s'f)+(p-l) E loge(k;), 

whe!e Sk =[.I/(n-I)]E(y; -mk)2, mk=(lln)Ey;, and y; = [(k;)P-
1]1 p. The tIlde signifies that the quantity is neither an estimated 
nor a true quantity of the population; it is a parameter of the calcu­
lation. The function L is evaluated for various values of p. In the 
present case, p could vary from - I to + I in increments of O. I. 
The value Pmax at which L is a maximum is the exponent that is 
most likely to be the true population exponent, so PML =Pmax' 

Box and Cox21 discuss the theory and application of the ML 
method. They advocate making a plot of L(p) vs. P to examine 
the behavior of the function before deciding on Pmax. Our experi­
ence is that, while such a plot can help, one does not get a "feel" 
for the changes in the distribution of the data as P is varied. Also, 
there is no absolute value that L must exceed; hence, there is a risk 
of selecting an exponent on the basis of the behavior of a few 
anomalous values. We found that making probability plots for select­
ed trial values of P is a more meaningful technique. 

Our method consists of making a series of normal probability 
plots (QQ plots),15 and estimating P on the basis of which expo­
nent gives the "best" behavior. In this context, "best" usually 
equates with the straightest line. The line straightness can be nu­
merically assessed by use of the correlation coefficient, r. If, how­
ever, a few "rogue" values are influencing the plot, that will be 
apparent and further investigation will be required. Usually, when 
no value of P is appropriate, the maximum correlation coefficient 
obtained for the data set, r max' behaves in one of two ways: 
. 1. The rmax value is obtained for some p, -I <p< + I, but r max 

IS smaller than the significance test value for the size of data set 
being studied. 24 

2. The r max value is obtained for some p that is well outside the 
expected range (e.g., p=3). 

In either case, the data should be examined for possible causes 
ofnon-p-ND behavior (e.g., data-entry error, fractured core plug, 
or low permeability value assigned a zero value). 

Unmeasurably low permeabilities cannot be treated as 0 md with 
either the Box-Cox approach or the probability plots (when p :sO). 
A small [e.g., <0.1 k(50)] positive constant may be added to all 
the data, however, without changing the PDF. 

Assessment of Exponent Estimators. A Monte Carlo computer 
program was written to test the properties of four exponent esti­
mators: the Box-Cox21 (BC) method, the normal probability plot 
(QQ) method, Hinkley's22 (H) method, and Emerson and Stoto's23 
(ES) method. For each of nine exponents,p= -1.0, -0.75, -0.50 
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... + 1.0, the program generated 1,000 data sets of n points 
(20:Sn:S 150) with which the estimators were tested. From a few 
preliminary trials, it became evident that all the estimators had fairly 
low bias [I P-(Pest)1 :sO. 10]. The ES method had the largest and 
the QQ method had the smallest bias. For efficiency, the BC method 
was best, followed by QQ, ES, and H. The standard error of 
(PH)est was about twice the standard error of (PBc)est. Because 
of the relatively poor efficiency of the H method, it was not in­
cluded in the extended testing. Similarly, the ES method was not 
included because, while its efficiency was only slightly lower than 
the QQ method, it was more biased. Consequently, we selected 
only the BC and QQ method for extensive testing. 

Fig. 5 is typical of the Monte Carlo test results obtained. For 
the case p = 0, the standard error of the QQ method marginally ex­
ceeded that of the BC method by about 6%. Whenp*O.O, the mar­
gin decreased to about 5 %. From the preceding analysis and these 
test results, we chose the QQ method for the Monte Carlo results 
shown in Fig. 4. Either estimator, however, appeared to give good 
results. 

The value of KDP enters into these tests because it is a measure 
of the variability of the distribution. As K DP increases, the data 
become more variable in value and, hence, it becomes easier to 
predict the true P value for the population. It is perhaps some con­
solation to know that, when we're working with a reservoir for 
which KDP =0.90, the exponent estimate Pest will be very accurate. 

Observations and Conclusions 
A J?ethod based on maximum likelihood has been proposed as an 
estImator of the Dykstra-Parsons coefficient, K DP ' The suggested 
technique extracts more information from the available data than 
the. conventi~:mal estimator. As a result, the ML approach produces 
estimates WIth half the error of estimates produced the traditional 
way. Equivalently, the proposed approach requires one-fourth the 
number of data points used by the conventional method to produce 
an estimate with a given accuracy. 

The proposed technique requires the efficient estimation of the 
permeability distribution. Four methods were examined and two 
were found to give good results. The two methods differ in the 
amount of computational effort needed and interpretability of the 
result. 

There is a continuing need for simple, representative heteroge­
neity measures in reservoir studies. Whenever the Dykstra-Parsons 
coefficient is used, the statistical errors of performance predictions 
can be reduced with the proposed technique. The additional com­
putational effort required is readily justified by the improvement 
in performance prediction. 

Nomenclature 
E = efficiency 
k = permeability, md 
K = heterogeneity coefficient 
m = bias or first moment of transformed data 
n = number of data points in a set 
N = normally distributed 
p = exponent parameter of a distribution 
r = correlation coefficient 
s = standard deviation 

tbl = breakthrough time, dimensionless 

Subscripts 
BC = Box-Cox method 
DP = Dykstra-Parsons 
est = estimated quantity 
H = Hinkley method 
K = Koval 

max = maximum 
s = sweep 
T = traditional 

(16),(50) = percentile value of a distribution 
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Superscripts 
E = extended definition 

MB = mobility buffer 
ML = maximum likelihood 

- = equation parameter 
- = average value 
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Appendix A-ML Properties 
The ML technique is a common estimation technique when the un­
derlying PDF of randomly chosen data is known. The theory for 
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normally distributed variables is particularly well established. 25.26 

Because the permeability data k I, k2 ... k n are log-normally dis­
tributed, loge(k l ), loge(k2) ... 10gAkn ) are N(mb S b for some 
mk and Sk' The ML estimator for sf is26 

(s f)est =(lIn)E[loge(k;)-(mk)estl 2 , ................. (A-I) 

where (mk)est =(1ln) E loge<k;) and the summations are over the 
n samples in the data set. The quanti~ n(s f)estls f has a X2 distri­
bution with n -I degrees of freedom. 5 Hence, the estimate (s f)est 
has the properties E[(sf)estl=[(n-I)/n]sf and var[(sf)estl= 
2[(n-I)ln2]sk, where E and var represent the expectation and var­
iance operators, respectively. Clearly, the estimator is biased and 
we can correct for that by using !I(n-I) instead of lin in Eq. A-I. 
We also want to obtain (Sk)est, not (s f)est or [(Sk)estl 2 , so a cor­
rection will be required for taking the square root. 

Corrected for both bias effects, Eq. A-I becomes26 

(sk)est = [I +0.25/(n -1)]{[lI(n -1)]E[loge(k;) -(mk)est]2} 'h. 

................................. . (A-2) 

For this estimator (Eq. A-2), E[(Sk)estl =sk and var [(Sk)estl = 
S f/2n, neglecting terms of order n 2 and higher. Using the estimate 
(Sk)est ofEq. A-2 in Eq. 8 and recognizing that var{exp[ -(Sk)est]) 
is related to the moment-generating function of a normal variate, 
we obtain E[(K:';~)estl =KDP -s f exp( -sk)/(4n) and var[(K:';~)estl 
=s f exp( - 2sk)l2n (neglecting terms of order n 2 and higher) for 
the proposed estimator, (K:';~)est = I-exp[ -(Sk)est]. 

Appendix B-KDP Estimation for 
Non-Log.Normal Permeability Distributions 
For the case where the permeability distribution is not log-normal 
(i.e., any PDF except the log-normal distribution), there is no the­
oretical relationship similar to Eq. 5 to relate the distribution to 
a value for K DP ' For the p-ND case, the curve on the log-normal 
probability plot will be concave downward or concave upward for 
p>O or p<O, respectively. 12 

The procedure advocated by Dykstra and Parsons6 includes in­
structions for drawing a best -fit line on the probability plot if the 
curve is not straight. This procedure thus takes a non-log-normal 
distribution (the curve) and produces an "equivalent" curve (the 
best-fit line) with a log-normal distribution. The estimate for KDP 
is based on that equivalent curve and, as Willhite9 has observed 
(his Example 5.6), may overstate the level of heterogeneity in the 
reservoir. 

We could adopt either of two approaches to define K DP for non­
log-normal PDF's: (I) use the percentile estimates [k(6 )]est and 
[k(50)]est obtained from some best-fit line procedure (which we 
would have to define mathematically) or (2) use the estimates 
[k(6)]est and [k(50)]est obtained directly from the data. We select­
ed the second approach because it (1) is a simple method for ob­
taining (KDP)est' (2) avoids such poorly defined techniques as 
drawing the best-fit line, (3) is consistent with the no-line approach 
already used by some investigators, 1,18,19 and (4) provides an ML 
estimator for p-ND populations for all p that is mathematically con­
sistent with the case of p=O. 

Thus, we extend the standard definition of KDP , 

E K DP =I-k06/k(50), ............................. (B-1) 

recognizing that k(l6) and k(50) could be the 16th and 50th percen­
tiles of any permeability distribution. From Eq. B-1, we obtain the 
estimator 

E 
(KDP)est = 1-[k(l6)]est/[k(50)]est' ................... (B-2) 

which, while resembling Eq. 2, has no best-fit-line aspect. When 
permeability is p-ND, [(k)P -1]lp is approximately N(mb sf). By 
knowing the PDF, we can substitute into Eq. B-1 the exact expres­
sions for the two percentiles, k (6 ) = [1 + p(mk - sk)] lip and 
k(50) =(1 +pmk) lip, to give 

E f 1- [I-pskl(i +pmk)] lip, P *0 ............. (B-3) 
KDP = 

I-exp( -sk), p=O . ............. (B-4) 
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Fig. C-1-QQ plot for Set 'A. 

Some properties of this expression have been described else­
where. 12 Perhaps the most important feature is that K5p values 
for two reservoirs, A and B, with significantly different expon~~ts, 
P A and PB, are not comparable. For example, suppose Kop = 
Km=0.6, k(50/=k(50)B=I~ md, PA =0,. and PB=0.2. For 
Reservoir A, k(84) =270 md, while for Reserv?lr B, k(84) =~~5 md. 
Reservoir A is more heterogeneous because wider permeability var­
iations are possible than with Reservoir B. 

With estimated quantities, Eqs. B-3 and B-4 provide an alterna-
tive expression for estimating K5p: 

(K5t;!L)est = 

\ 1-{I ~Pest(sk)est/[1 +Pest(mk)est]} IiPesl, Pest:O .... (B-5) 

l I-exp[ - (Sk)estl, Pest -0, .... (B-6) 

where (mk)est=(lIn)Eyj, .... , .......... , .......... . (B-7) 

(Sk)est = [I +0.25/(n -1)]{[II(n -I)]E[ Yj -(mk)estl 2 } y" 

.................................. (B-8) 

and Yj=[(kj)pesl -1]IPest. Eqs. B-7 and B-8 are the same ML es­
timators described in Appendix A. These ML estimators have been 
found to be insensitive to errors in Pest .15 Comparing the estima­
tors (Eq. B-2 with Eq. B-5 or B-6) with Monte Carlo simulations 
shows that, whenp*O, the advantages of the ML technique are 
not quite as ~ronounced as they are for p=O. For equal standard 
errors of (Kop)est and (K5t;!L)est' the ML method requires one­
third the number of data required by the percentile method. 

374 

4 

32 points 
2 r=O.980 

0 

-2 

-4+-~--'-~-'--~.-~--r-~~ 

-2.5 -1.5 -0.5 0.5 1.5 

Normal Quantiles 

Fig. C-2-QQ plot for Set B. 

TABLE C-1-TRADITIONAL AND PROPOSED 
ESTIMATOR PROPERTIES 

2.5 

Set A (Pesl = 0) Set B (P esl = 0.5) 

(KgP)esl 0.62 0.78 
(Kg~L )"Sl 0.68 0.72 
(mgp)esl -0.Q14 -0.028 
(mg~L)"SI -0.005 -0.033 

(sgp)"SI 0.13 0.11 
(Sg~L )"Sl 0.06 0.07 

Appendix C-Examples 
We present two examples (Sets A and B) from field data to dem­
onstrate the differences between the traditional and proposed tech­
niques. Figs. C-I and C-2 are probability plots (as discussed in 
Refs, 14 and IS) based on data from the Redwash27 (Set A) and 
the El Dorad09 (Set B) fields, respectively. The upper and lower 
lines are the 95% confidence lines. 

Fig. C-I indicates that the data come from a log-normally dis­
tributed popUlation-i.e., Pest =0. A similar analysis of Fig. C-2 
suggests that Pest =0.5 for Set B. On the basis of these Pest values, 
Table C-llists the results for the traditional and proposed methods 
for the reservoir Kop estimates. The biases and standard errors list­
ed were calculated from the relevant equations in the text for Set 
A, while Monte Carlo simulation was used for Set B. 

For both cases, the bias and standard error performances of the 
ML approach give the Kop estimates superior statistical proper­
ties. The ML estimator for Set A gives a more pessimistic indica­
tion of the reservoir heterogeneity level. The opposite is the case 
for Set B. The bias and standard error performances of both esti­
mation methods is apparently poorer for Set B than for Set A, par­
ticularly when the relative sizes of the data sets are considered. As 
discussed in Appendix B, however, the heterogeneity levels repre­
sented by the two sets are significantly different. Depending on the 
process to be implemented, the standard errors for Set A could rep­
resent much larger variations in reservoir performance than the ap­
proximately equal errors listed for Set B. In any case, the ML 
approach has evidently reduced the uncertainty associated with the 
heterogeneity estimates. 

51 Metric Conversion Factor 
md x 9.869233 E-04 p.m2 
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