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ABSTRACT 

Formation matrix properties, such as matrix 
density, can be estimated from the elemental 
concentrations available from modem, openhole, 
nuclear spectroscopy logging techniques. Although 
this estimation is similar to that of mineral-based 
interpretation frequently practiced today, it can pre- 
empt the a priori selection of minerals by solving for 
matrix properties directly from the elements. This 
simple approach greatly enhances the ability to perform 
wellsite interpretations in both simple and complex 
formations. 

The interpretation for the matrix density is 
derived from a comprehensive database containing 
hundreds of core samples analyzed for both mineralogy 
and chemistry. The chemical analysis includes not only 
the major elements, but also the minor and trace 
elements that significantly influence wireline log 
responses. These data are used to forward model the 
matrix which is then solved as a linear combination of 
four elements (silicon, calcium, iron, sulfur) that are 
measured by prompt neutron capture spectroscopy. 
Comparisons are shown between measured and derived 
matrix density along with statistical measures of 
goodness of fit. Although in many cases the errors 
could be reduced by local optimization, the overall 
agreement is quite good. 

Although matrix density is empirically derived, 
the rationale is straightforward. For example, in 
sandstone, matrix density is aiproximately equal to that 
of quartz and feldspar, and it increases as the 
concentration of calcium- and iron-bearing minerals 
increases Therefore, calcium and iron heavily influence 
matrix density. The feldspar minerals are less dense 
than quartz and are not well sensed by the elements Si, 
Ca, Fe and S. Therefore, separate algorithms are 
presented for non-arkosic, sub-arkosic, and arkosic 
environments. 

INTRODUCTION 

Matrix density, pna, is an important petrophysical 
parameter needed for the conversion of measured bulk 
density logs into the desired answer of total porosity. 
The equation is 

gj= (PUl, 7%) I \ t (1) 
hrta -Pf) 

where pma, pb and pf refer to matrix, bulk tid fluid 
densities, respectively. Bulk density is measured by 
gamma-gamma logging devices. The fluid density can 
usually be approximated by that of mud filtrate in 
permeable zones and connate water in less permeable 
zones - both are close to 1.0 g/cm3. The matrix density 
is generally unknown in the conversion of bulk density 
into porosity and for siliciclastic rocks is frequently 
assumed to be 2.65 g/cm3, the density of quartz. 

Matrix density is often estimated as a constant 
based on local knowledge, or is a byproduct of mineral 
modeling, which is a common petrophysical analysis 
procedure today. In mineral modeling, a suite of 
possible minerals is assumed and log responses are fit 
as linear combinations of volumes of the possible 
minerals and fluids such as oil, water and gas. Because 
there are so few degrees of freedom available from the 
limited inputs of normal logging suites, the assumed 
mineral suite may require several processing iterations. 

An alternative to mineral modeling is to calculate 
matrix density from available elemental concentrations. 

p,,la=a+bSi+cCa+dFe+eS (2) 

The feasibility of this approach has been demonstrated 
for local optimizations on single well data sets (Herron 
and Herron, 1997). The goal is to identify a global JJ 
relationship that does not require local calibration. 
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T ATA SET 

The data set consists of 608 siliciclastic samples 
received from 26 wdls around the vv~rld wbicb have 
been analyzed fQr chemical and mineralogical content. 
It is important to note that the chemistry and 
mineralalogy are cQmpletdy independent measurements 
Matrix dennsity for each of the samI9les is csmputed 
fmm the quantitative mineralogy. The reasQns for 
using computed values instead of measured values are 
presented below. 

The quantitative mineralQgy was measured us’ 
SIX’s Dual Range Fourier Transform Infrared (FT- 
technique (I-IerrQn et al., 1994). The mineral 
concentrations measured are as f~ollsws: 

Framework Silicates: Quartz, elherht K-Feldspar, Na- 
Feldspar, Cab-Feldspar 

Carbonates: Calcite, Dolomite, kerite (Fe-rich 
dolomite), Aragouite, Siderite, Sideroplescite (Mg- 
rich siderite), Magnesite, High-Mg Galcite 

Clays: Illite, Smectite, Kac9linite, chlsrite, Glauconite 
Others: Muscovite, l&i&e, Pyrite, Opal, Gypsum, 

te, Barite, I-Iematite, Celestite, Fluorite 
0rganic matter, sah (halite) 

were perhrmed by X-Ray 
Assay Laboratories ) in Don Milks, OntariQ, 
Gnada. The anal eclmiques in&de x-ray 
fluorescence, prQmpt neutron activation analysis, 
LlXO, coulometry, and induction coupled plasma mass 
spectrometry. The analysis includes these elements and 
compounds: 

Si, Al, Ga, Mg, Na, K, Fe, &In, Ti) P, G, B, 
s, Gd, Th, u, Rb, Sr, Y, 22, Nb, 
(vslatile at low temperature), 

le at high temperature), and Loss 
on Ignition (total voPatiles). 

The matrix density used for this study is cakulated 
from the quantitative mineralogy using the relationship: 

a -XI (3 
P ma 

where D/Ii is the decimal weight hactisn d each mineral 
and pB is its associated grain density. The assigned 
grain densities are provided in Table 1 (IIurlbue, 19’71; 
Herron and Ivlatteson, 1993). 

There are three major factors that led to the use 
of computed matrix density for this study. The first is 

availability of data. Iy a small fraction of the 
samples mdyzed fQr mineralQgy and chemistry were 
ah analyzed for matrix density, and the samples are no 
longer available. The second factor is sample 
homogeneity. For the chemistry and mineralogy the 
saml3Ies were scrupulously homsgenized and split. In 
contra& the matrix densities have generally been 
measured on separate powdered portions of the sample, 
and they often show a Iack of coherence with the 
chemistry or mineralQgy. The third factor is 
CQntaminatiQn by organics. The gsal of this study is to 
produce a matrix density Qf the Qrganic-free matrix. 
IJnfQrtunately, the core samples obtained fQr laboratory 
analysis frequently contain low density (-1.1 g/cm3) 
insduble organic matter or a residue of soluble organics 
fdkWhg incomplete cleaning, and laboratory 
measurements of matrix density reflect this organic 
component. As little as 0.5 wt% organic matter 
decreases me measured matrix density of a 2.64 g/cm3 
sample i% 2.65 g/cm3. TherefQre, to account for the 
presence of organic& we have calculated the organic 
matter for every §ar@e using the Qrganic carbon 
comer& and recsm~uted the chemistry and mineralogy 
to provide data on two complete bases: one that 
incleades the mgmic matter and one that excludes the 
organic matter horn all data. The regressions in this 
paper are made on an organic-free basis. 

The impact of organic matter on measured 
matrix is demonstrated for three data sets in Figure 1. 
Fignres la and lb shQw a set of 16 granuhir samples 
with an average srganic carbon CQntent of 2.6 wt%. 
Figure la shows that the measured matrix density is 
significantly Iower than the matrix density computed on 
an organic-kee mineral matrix. FQr Figure lb, the 
measured organic carbon is treated as an insoluble 
organic matter and taken ints account in the matrix 
density commnati~n, thus bringing the data sets into 
fairly gOQd agreement. 

A secand example is presented in Figures ‘lc and 
Id where measured matrix density values are as low as 
2.5 g/cm3. This set of samples contains mostly shales, 
and the minimum computed matrix density is 2.66 
g/m3. IncQrporating the organic matter brings 
computed matrix densities intQ reasQnable agreement 
with measured values. TWQ szanples plot off scale due 
to a large discrepancy, with the measured values at 
about 3.1 g/cm3 and computed values at 2.65 g/cm3. 
Neither the chemistry nQr the mineraIogy of these two 
samples indicates the presence of a heavy element or 
heavy mineral, which might explain the high value for 
the measured density. The disaepancy is therefQre 
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attributed to nonhomogeneity of the samples used for 
the different measurements. 

A final comparison is presented for a set of 
granular samples containing less than 1 wt% organic 
carbon in Figures le and If. For these samples, there is 
only a small change between the matrix densities 
computed with and without organic carbon. The 
agreement between measured and computed matrix 
densities is fairly good. 

THE IMPACT OF MATRIX DENSITY 

The impact of matrix density is a function of its 
variability. Figure 2 presents the matrix density values 
of the 608 samples in the study data set. Since shales 
generally have a higher matrix density but are of much 
less interest from a petrophysics point of view, the 
samples are sorted on clay content. The clay content is 
less than 10 wt% in samples up to number 203; less 
than 20 wt% up to samples 330; and less than 30 wt% 
up to sample 403. A reference line is drawn for a 
matrix density of 2.65 g/cm3. 

Figure 3 shows the corresponding porosity 
values assuming a bulk density of 2.4 g/cm3 and a fluid 
density of 1 g/cm3. The reference line is at 15.15 p.u., 
corresponding to a fixed matrix density of 2.65 g/cm’. 

The most important observation is that for the 
vast majority of the samples, the matrix density is 
higher than a commonly used default value of 2.65 
g/cm3, and therefore the porosity calculated with the 
true matrix density is higher. To get a better picture of 
the increase in porosity, Figure 4 presents the percent 
change in porosity for samples with less than 20 wt% 
clay. The very large increases of 40% or greater are 
unrealistic; they occur primarily in samples with high 
concentrations of siderite or pyrite that for log data 
would be accompanied by a compensating- increase in 
bulk density. The real value is in the increases of a few 
to ten or more percent in porosity; these translate 
directly into increased estimates of reserves. 

The approach here is to compute a level-by-level 
matrix density as a function of elemental concentrations 
that can be measured by nuclear spectroscopy. One 
advantage of this over mineral modeling is that it would 
enable a wellsite computation. The rationale for 
estimating matrix density from either minerals or 
elements is straightforward. Consider a pure quartz 
sandstone; the matrix density is 2.65 g/cm’. As calcite 
is substituted for quartz or as the calcium concentration 
increases, the matrix density increases, approaching 
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2.71 g/cm3. Similarly, as pyrite or siderite is introduced 
to the -system, the iron concentration increases, and so 
does the matrix density. 

The ability to quantify changes in matrix density 
from chemistry depends on how well the parameters 
correlate. The four elements” that are readily available 
for such a computation are silicon, calcium, iron, and 
sulfur. Figure 5 demonstrates the relationships between 
these four elemental concentrations and matrix density. 
There is a high correlation between iron and matrix 
density. Clearly, in any regression performed on such 
data, iron will dominate and the other elements will 
play a moderating role. 

The relationship between iron and matrix density 
can also be observed in some common iron-bearing 
minerals, as shown in Figure 6. The solid dots 
represent quartz (no. iron), illite, siderite, and pyrite. 
These are by far the dominant iron-bearing minerals in 
the data set. For these minerals, the increase in matrix 
density from quartz to siderite could be modeled on 
iron alone, and sulfur could be used to provide a boost 
for the denser pyrite. The open circles represent 
minerals which are far less common in the study 
samples but which nevertheless follow the trend of 
increasing matrix density with increasing iron. 

CATEGORIZING THE DATA 

Prior to this work; the primary interpretation 
product for nuclear spectroscopy elemental 
concentration logs has been SpectroLith’ (Herron and 
Herron, 1996, Horkowitz and Cannon, 1997), a 
mineral-based lithology determined from elemental 
concentrations of silicon, calcium, iron, and sulfur. In 
this interpretation, it was necessary to provide two 
algorithms for clay determination: a default algorithm, 
which is fairly robust on a global basis, and a second 
algorithm for feldspar-rich rocks. In a sandstone 
classification, the feldspar-rich sandstones in the 
SpectroLith data set would be classified as sub-arkoses, 
with a feldspar content ranging from lo-25 wt%. 
Subsequent research has shown that arkosic sandstones, 
with feldspar concentrations of greater than 25%, 
require a different algorithm. 

The question arises as to whether similar 
distinctions must be made for computing matrix density 
from elements. Since both potassium- and sodium-rich 
feldspar minerals have a lower matrix density than 
quartz, it is easy to imagine that extremely high J J 
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concentrations of these feIdspars would have an impact 
on the csmputati~n. For this study, the individual 
datasets were categorized as Nan-ark~~e, sub-arkQse, 
and arkose. approximately 68% Of the samples faII 
into the non-arkose category, and these samnles are 
well distributed among varying geographic and 
geologic regimes. The sub-arkQ§e samples csmprise 
about 19% of the sampIes, and they also have 
reasQnably diverse origins. only 13% of 
are arkoses, 2nd essentially all of these 
multilAe wells in the same location. The a&me 
samples were analyzed, but with such 1Qcalized 
sampling, they do not factor heavily in the conclusions. 
Figure 7 is a histogram of the fe%dspar content in the 
samples with less than 20% day. 

Regressions to estimate density were performed 
separately on the following cQmb~~~~Q~§ of data: 

1. NQ~-~kQ§e (414 samples) 
2. Non-arkose and sub-nrkose (530 samples) 
3. Sub-arkose (116 saqks) 
4. Arkase ( 76 5mpIes) 

The data were analyzed using a least shpuares 
regression to predict matrix density (in g/cm3) from 
silicon, calcium, iron, and sulfur (expressed in wt%) on 
each of the data sets described above. Since the 
primary objective is to develQp an interpretation fQr 
Unclear SpecProscQpy lsgging devices, the kngnswn 
elemental interferemces for calcium and iron were 
into accoum so the regressisns were actually run 
the cnnnnities Ca+O.6& and Fe+O.l4Al (Herron et al., 
1992). 

Table 2 presents the results of the regressions, 
including the intercepts and elemental coefficients as 
well as the correlation coefficient and standard error. 
Fsr all categories analyzed, 
estimated matrix density is 
The algorithms for non-arkose 
combined non-arkosdsub 
essentially identical. Alg 
data from six wells in Figur 
and center columns are non-arkssic; the wells in the 
right column are sub-arkosic. The standard error ranges 
from 0.005 g/cm3 for one Qf the subarkose datasets to 
0.026 g/cm3 fsr one of the non-arkQse datasets. These 
are the best and worst levels of agreement. The 
subarksse algorithm (3) produces a matrix density 
apl9roximately 0.01 g/cm3 less than algorithm 2. 
However, it only provides a substantive improvement to 
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matrix den§ity estimatiQn in One of nine subarkose 
datasets. Overall, the cQmbined nQn-~kose/s~~~kose 
algsrithm is ciuite robust and serves both categories 
well as a defaule estimat0r of density. 

Hn contrasf the arkose algorithm (4) produces 
matrix densities that are as much as 0.04 g/cm3 lower 
than algorithm 2. The difIerence is greatest in the sands 
and approaches zerho in the shales. These rocks have 
greater than 40 wt% feldspar~ and must be interpreted 
differently. It is important to note that this algorithm is 
derived using samples from a single geograI9hical 
lscation, and it is not ~e~e~s~~y re~~es~~~~ve of all 
arkQsic rQcks. 

Figure 9 I9resents an example of matrix density 
derived by applying algshithm 2 to elemental 
concentration logs from a deltaic depQsitiona8 
environment in Venezuela ( ryant et al., 1997). A 2.65 
g/cm” reference line is pr0vided. Core data are shown 
f0r c~rn~~so~. The cQr ix dens 
2.66 t.Q 2.76 gkm3, and ariation 
quite well by the log data. 

A robust estimatiQn of m density from log- 
derived elemental concentrations has been presented. 
This es ation was derived using a core database of 
Qver 600 sands and shaly sands. The matrix density 
e§timatiQn prsvided is free of Qrganics; it represents the 
mineral matrix. A single algorithm can be used for 
non-arkQsic and SubarkQsic environments with standard 
erms 0f about Q.015 g/cm3. The input elemental 
concentration logs are available at the wellsite. Thus, a 
real time matrix density is easily feasible from the 
current generation of nuclear S~ec~QscQ~y logs. 
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Table IL. Mine& 

Opal 2.1 

Chert 2.65 
Orthodase 2.55 

I LIT,-n+:*, 

/ 
LY)bUGdlb& 
Sidr---” r.-- :r- 

&bite 
Anorthite 
Illite 
Smectite 
Kaolinite 
Chlorite 

1 Glauconite 
IvIuscovite 
Biotite 

2.63 , mp-L”bg &cublLC I 
3.07 / Magnesite ;:; 
2.89 1 Fluorite 3.18 
2.8 
3.0 

1 Celestite 3.95 

Table 2. Matrix density coefficients 
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Figure 1. The presence of organic matter in samples from wells 1 and 2 lowers the measured matrix density as 
compared to the matrix density computed from minerals, as seen in Figures la and lc. When organic matter is 
incorporated into the computation, the two values agree much more closely. In well 3, the organic content is less 
than 1 wt%, so the impact is considerably smaller. 
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Figwe 2. MatAx densities m .a.U samples ordered by inncreasing day content. Note tie gemzaNy higher ma&ix 
densities in the shalier samples. 

0 100 200 300 400 00 600 
ample 

Figure 3. The matrix densities from Figwe 2 are translated iwt~ pomsity v&m assuming a bulk density of 2.4 
g/an3 and a fluid density of 1.0 g/m3. The straight, hotizontal lh3 represents a porosity sf 15.15 pu., the value 
calculated from a matrix density of 2.65 gkm3. 
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Figure 4. Percentage change in porosity using measured matrix density instead of a default 2.65 g/cm3. 
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Figure 5. Matrix densities compared to concentrations of silicon, calcium, iron, and sulfur. Note the strong 
correlation between matrix density and h-on. 
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5.5 
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Figure 7. Feldspar content of sandstone samples with total day ~~~~~~~~~Q~~ d less than 20 wt%. The majority of 
samples in this study bdong to tie non-arkosic category (<IO wt% feldspar). 
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Figure 8. Comparison of measured and estimated matrix densities from algorithm 2 for six wells. Wells in the first 
two columns are non-arkosic; wells in the third column are subarkosic. The average absolute deviation between 
measured and estimated matrix density is provided for each well. These six wells span the range from the best to 
worst agreement. 
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