Дебит скважины с разными радиусами дренирования.

Последнее сообщение
Jfk 393 11
Июл 18

Корифеии RE и PT, подскажите пожалуйста по следующему вопросу. Почему при большем объеме дренирования, большем контуре питания, расчетный дебит скважины ниже, чем с меньшим контуром питания? Не могу найти физического объяснения для себя.
Если вы попробуете в проспере поиграть с объемом зоны дренирования то увидете данный эффект, так же в симуляторе.

ALY 108 10
Июл 18 #1

В течение неустановившегося режима (пока радиус исследования не достигнет re), дебит не будет зависеть от расстояния до контура.

При псевдоустановившемся режиме дебит не будет снижаться с увеличением объема, он будет снижаться с увеличением расстояния до контура. Увеличивается расстояние - уменьшается депрессия на единицу длины "работающей системы".

В формуле Дарси при расчете дебита радиус контура питания re стоит в знаменателе, то есть с увеличением re дебит снижается при неизменной депрессии.

ResEng 88 4
Июл 18 #2

если предположить, что dP одинаковый для обоих случаев (?), то при большем радиусе дренирования, градиент перепада давления будет меньше => меньше дебит

в формуле дюпюи та же фигня: дебит ~ А / B*ln(Rконтура/Rскважины+S). => Больше контур, меньше дебит.

Krichevsky 454 9
Июл 18 #3

Это очень легко понять если представить таким образом:

есть контур, где давление условно равно некоторому пластовому. Чем дальше этот контур от скважины, тем понятное дело меньше дебит. Так лучше?

И очень важно не путать контур питания и радиус дренирования (он у вас в названии топика). Это принципиально разные вещи. Контур питания это зона где на границе условно пластовое давление, а радиус дренирования - это откуда вообще течет в сторону скважины. В некоторых случаях при плотной сетке они могут быть сравнимы, но например, в случае одной скважины, контур питания это сотни метров, а радиус дренирования - вся залежь. В расчете установившегося режима радиус дренирования не участвует, он используется для расчета падения пластового во времени.

Lyric 279 11
Июл 18 #4

Krichevsky wrote:

И очень важно не путать контур питания и радиус дренирования (он у вас в названии топика). Это принципиально разные вещи. Контур питания это зона где на границе условно пластовое давление, а радиус дренирования - это откуда вообще течет в сторону скважины.

Ключевое слово я так понимаю "условно". Если на каком-то расстоянии у нас давление не меняется, то нет и градиента который обеспечивал бы движение жидкости из-за пределов данной зоны.

 

 

RomanK. 2145 10
Июл 18 #5

Krichevsky wrote:

Это очень легко понять если представить таким образом:

есть контур, где давление условно равно некоторому пластовому. Чем дальше этот контур от скважины, тем понятное дело меньше дебит. Так лучше?

И очень важно не путать контур питания и радиус дренирования (он у вас в названии топика). Это принципиально разные вещи. Контур питания это зона где на границе условно пластовое давление, а радиус дренирования - это откуда вообще течет в сторону скважины. В некоторых случаях при плотной сетке они могут быть сравнимы, но например, в случае одной скважины, контур питания это сотни метров, а радиус дренирования - вся залежь. В расчете установившегося режима радиус дренирования не участвует, он используется для расчета падения пластового во времени.

 

Ничего не понял из вашего легкого объяснения. По мне так все равно, что радиус дренирования, что контур питания. С легкостью можно оперировать понятием радиус контура питания, а можно ещё радиус контура питания области дренирования.

Krichevsky 454 9
Июл 18 #6

Lyric wrote:

Ключевое слово я так понимаю "условно". Если на каком-то расстоянии у нас давление не меняется, то нет и градиента который обеспечивал бы движение жидкости из-за пределов данной зоны.

Нет. В классической гидродинамике при запуске скважины давление мгновенно начинает меняться на любом расстоянии от нее. Именно поэтому "условно" пластовое. Просто гидродинамики заметили что если воронку депрессии отложить в координатах логарифма расстояния, то она получается вблизи скважины конусом, который только в конце выполаживается. Вот экстраполяция этого конуса это и есть радиус контура питания, на котором давление считается пластовым.

RomanK. wrote:

Ничего не понял из вашего легкого объяснения. По мне так все равно, что радиус дренирования, что контур питания. С легкостью можно оперировать понятием радиус контура питания, а можно ещё радиус контура питания области дренирования.

Печально, значит плохо объясняю. Попробую проще - вот вы когда открываете слив в ванной, то вокруг него образуется воронка, по которой вода сливается. Вот эта воронка - контур питания, а зона дренирования - вся ванна.

RomanK. 2145 10
Июл 18 #7

Физический смысл следующий.

Для радиальной фильтрации, распределение давления по пласту линейно в логарифмических координатах расстояния.

Это значит, что на фильтрацию жидкости на постоянную дельту логарифма расстояния, затрачивается один и тот же перепад давления. Постоянный угол наклона можно назвать "гидравлическим уклоном". Робот поднимая доску на определенную высоту иллюстрирует понятие уклона. 

Далее, уклон умноженный на свойство среды и на геометрический фактор (2П) даёт нам дебит скважины.

Поднимая или опуская доску вверх или вниз (но не изменяя гидропроводность) мы будем получать бОльший или меньший дебит. Далее рассмотрим две ситуации.

Первая - при постоянном гидравлическом уклоне сократим расстояние контура питания в два раза. Для того, чтобы дебит жидкости не изменился, потребуется меньшая депрессия.  Продуктивность скважины увеличивается.

И вторая ситуация - при изменении контура питания сохраняется депрессия. В этом случае, изменяется гидравлический уклон и дебит увеличивается там, где сильнее наклон линии давления.

 

 

Это и есть ответ на ваш вопрос. Дебит при увеличении радиуса контура питания становится меньше, потому что вы не сохраняете гидравлический уклон, а уменьшаете его.

Krichevsky 454 9
Июл 18 #8

С роботом нагляднее, возьму на заметку.

RomanK. wrote:

Для радиальной фильтрации, распределение давления по пласту линейно в логарифмических координатах расстояния.

А вот это не совсем верно. Линейно в определенных пределах. Постройте сами и убедитесь.

Вот у вас на картинке с роботом на расстоянии R давление P. Это пластовое? А дальше R оно везде равно P? Это почему? У нас по закону Дарси минимального градиента для фильтрации нет, давление должно меняться мгновенно по всему пласту до бесконечности (ну или до границ зоны дренирования).

Так вот там где логарифм линейный - это контур питания, а все остальное до бесконечности (или до границ, в т.ч. динамических от соседних скважин) - зона дренирования.

Krichevsky 454 9
Июл 18 #9

Вот, чтобы не быть голословным. Перепад давления через некоторое время после запуска скважины в бесконечном пласте.

Видите в конце загиб? Вот если линейную часть экстраполировать на ноль ординат (Pпл), то получится радиус контура питания.

Любопытно, что если прикинуть приток, то окажется, что уже с небольших времен вклад добычи из пределов контура питания в общий дебит становится очень мал, его задача - обеспечить наклон доски у робота и дать флюиду из-за его пределов стечь к скважине.

RomanK. 2145 10
Июл 18 #10

В топике обозначена задача стационарной фильтрации, я и комментирую стационарную фильтрацию.
А рисунками с нестационарной фильтрацией не пойму, на что вы отвечаете.

Krichevsky 454 9
Июл 18 #11

Стационарная фильтрация это не какой-то особый случай, а упрощение для инженерных нужд. В любой момент когда вы пользуетесь формулой Дюпюи, распределение давления в логарифме на самом деле не является прямой.
Если держать это в голове то не будет путаницы между контуром питания и зоной дренирования. С остальными вашими выводами я согласен.

RomanK. 2145 10
Июл 18 #12

Воистину, Владимир Маркович, свидетельствую вам, что при стационарной, установившейся фильтрации, распределение давления в логарифме является прямой. Это проходят в университетах, даже в таком дрянном как мой. Собственно, уравнение прямой известно,

p(r) = p(w) + i * (ln(r)-ln(rw))

И иллюстрации даны мной исходя из этой записи.

Krichevsky 454 9
Июл 18 #13

Сильная формула. Согласно ей, давление при удалении от скважины растет до бесконечности. Вас это не смущает?

Может оно все-таки формула имеет границы применимости, и давление растет линейно до какого-то момента, а потом выполаживается асимптотически?

RomanK. 2145 10
Июл 18 #14

Вы так рассуждаете, будто впервые в жизни встречаете установившийся, псевдо-установившийся и неустановившийся режим фильтрации.

Krichevsky 454 9
Июл 18 #15

Хорошо, значит мы договорились что давление растет по этой формуле не до бесконечности а до ближайшей нагнетательной скважины или чего-то еще волшебного, что поддерживает постоянное давление.
В этом случае понятие радиуса контура питания вообще теряет смысл. Можно в уравнение Дюпюи взять любую пару радиус-давление от нашей скважины до нагнеталки. И вместе с этим давление в числителе теряет смысл пластового.

Так вот Rкп затем и нужен, что с его помощью можно применять Дюпюи и для pss и для неустановившегося режима. Иначе по Дюпюи нельзя было бы прикинуть дебит для одиночной скважины или для месторождений без ППД, для всех этих случаев не работали бы индикаторные диаграммы. Все это к счастью не так.

Выводы:
1. Уравнение Дюпюи не ограничено применением для ss.
2. Контур питания и зона дренирования - разные вещи.

Go to top